Saleh, Mohammad; Asad, A. Dynamics of \(K\)\(^\mathrm{th}\) order rational difference equation. (English) Zbl 1473.39032 J. Appl. Nonlinear Dyn. 10, No. 1, 125-149 (2021). MSC: 39A30 39A23 PDF BibTeX XML Cite \textit{M. Saleh} and \textit{A. Asad}, J. Appl. Nonlinear Dyn. 10, No. 1, 125--149 (2021; Zbl 1473.39032) Full Text: DOI OpenURL
Abo-Zeid, R.; Kamal, H. Global behavior of a third order difference equation with quadratic term. (English) Zbl 1462.39010 Bol. Soc. Mat. Mex., III. Ser. 27, No. 1, Paper No. 23, 15 p. (2021). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{H. Kamal}, Bol. Soc. Mat. Mex., III. Ser. 27, No. 1, Paper No. 23, 15 p. (2021; Zbl 1462.39010) Full Text: DOI OpenURL
Hassan, Sk. Sarif; Mondal, Soma; Mandal, Swagata; Sau, Chumki Asymptotic dynamics of a class of third order rational difference equations. (English) Zbl 07508885 Far East J. Dyn. Syst. 32, No. 1, 21-49 (2020). MSC: 39A10 39A11 PDF BibTeX XML Cite \textit{Sk. S. Hassan} et al., Far East J. Dyn. Syst. 32, No. 1, 21--49 (2020; Zbl 07508885) Full Text: DOI OpenURL
Abo-Zeid, Raafat; Kamal, Hossam On the solutions of a third order rational difference equation. (English) Zbl 1480.39005 Thai J. Math. 18, No. 4, 1865-1874 (2020). MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{H. Kamal}, Thai J. Math. 18, No. 4, 1865--1874 (2020; Zbl 1480.39005) Full Text: Link OpenURL
Georgiev, Svetlin G. Asymptotic behaviour of the solutions of a class of \((k+1)\)-order rational difference equations. (English) Zbl 1474.39025 Sarajevo J. Math. 16(29), No. 2, 237-244 (2020). MSC: 39A22 39A20 PDF BibTeX XML Cite \textit{S. G. Georgiev}, Sarajevo J. Math. 16(29), No. 2, 237--244 (2020; Zbl 1474.39025) Full Text: DOI OpenURL
Abo-Zeid, R. On a rational second order difference equation with quadratic term. (English) Zbl 1454.39021 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 299-308 (2020). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 299--308 (2020; Zbl 1454.39021) Full Text: Link OpenURL
Al-Salman, Ahmad; AlSharawi, Ziyad; Kallel, Sadok Extension, embedding and global stability in two dimensional monotone maps. (English) Zbl 1451.39009 Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4257-4276 (2020). MSC: 39A22 39A30 39A10 37E30 PDF BibTeX XML Cite \textit{A. Al-Salman} et al., Discrete Contin. Dyn. Syst., Ser. B 25, No. 11, 4257--4276 (2020; Zbl 1451.39009) Full Text: DOI arXiv OpenURL
Phong, Mai Nam A note on the global behavior of a system of second-order rational difference equations. (English) Zbl 1463.39015 Electron. J. Math. Anal. Appl. 8, No. 2, 81-93 (2020). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{M. N. Phong}, Electron. J. Math. Anal. Appl. 8, No. 2, 81--93 (2020; Zbl 1463.39015) Full Text: Link OpenURL
Abo-Zeid, R. Behavior of solutions of a rational third order difference equation. (English) Zbl 1463.39014 J. Appl. Math. Inform. 38, No. 1-2, 1-12 (2020). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, J. Appl. Math. Inform. 38, No. 1--2, 1--12 (2020; Zbl 1463.39014) Full Text: DOI OpenURL
Dekkar, Imane; Touafek, Nouressadat Global stability of some nonlinear higher-order systems of difference equations. (English) Zbl 1443.39008 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 131-152 (2020). MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{I. Dekkar} and \textit{N. Touafek}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 2, 131--152 (2020; Zbl 1443.39008) Full Text: Link OpenURL
Comerford, Mark; Stankewitz, Rich; Sumi, Hiroki Hereditarily non uniformly perfect non-autonomous Julia sets. (English) Zbl 1435.30082 Discrete Contin. Dyn. Syst. 40, No. 1, 33-46 (2020). MSC: 30D05 30C10 PDF BibTeX XML Cite \textit{M. Comerford} et al., Discrete Contin. Dyn. Syst. 40, No. 1, 33--46 (2020; Zbl 1435.30082) Full Text: DOI arXiv OpenURL
Abo-Zeid, Raafat Behavior of solutions of a second order rational difference equation. (English) Zbl 1474.39016 Math. Morav. 23, No. 1, 11-25 (2019). MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Morav. 23, No. 1, 11--25 (2019; Zbl 1474.39016) Full Text: DOI OpenURL
Ma, Wen-Xiu Global behavior of a higher-order nonlinear difference equation with many arbitrary multivariate functions. (English) Zbl 1462.39002 East Asian J. Appl. Math. 9, No. 4, 643-650 (2019). MSC: 39A10 39A23 39A30 PDF BibTeX XML Cite \textit{W.-X. Ma}, East Asian J. Appl. Math. 9, No. 4, 643--650 (2019; Zbl 1462.39002) Full Text: DOI OpenURL
Abo-Zeid, R. On a fourth order rational difference equation. (English) Zbl 1434.39008 Tbil. Math. J. 12, No. 4, 71-79 (2019). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Tbil. Math. J. 12, No. 4, 71--79 (2019; Zbl 1434.39008) Full Text: DOI Euclid OpenURL
Dekkar, Imane; Touafek, Nouressadat; Din, Qamar On the global dynamics of a rational difference equation with periodic coefficients. (English) Zbl 1417.39057 J. Appl. Math. Comput. 60, No. 1-2, 567-588 (2019). MSC: 39A30 39A22 PDF BibTeX XML Cite \textit{I. Dekkar} et al., J. Appl. Math. Comput. 60, No. 1--2, 567--588 (2019; Zbl 1417.39057) Full Text: DOI OpenURL
Abo-Zeid, R. Global behavior of a fourth-order difference equation with quadratic term. (English) Zbl 1412.39002 Bol. Soc. Mat. Mex., III. Ser. 25, No. 1, 187-194 (2019). MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Bol. Soc. Mat. Mex., III. Ser. 25, No. 1, 187--194 (2019; Zbl 1412.39002) Full Text: DOI OpenURL
Ishaque, Waqas; Din, Qamar; Taj, Muhammad; Iqbal, Muhammad Asad Bifurcation and chaos control in a discrete-time predator-prey model with nonlinear saturated incidence rate and parasite interaction. (English) Zbl 1458.37098 Adv. Difference Equ. 2019, Paper No. 28, 16 p. (2019). MSC: 37N25 92D25 39A28 PDF BibTeX XML Cite \textit{W. Ishaque} et al., Adv. Difference Equ. 2019, Paper No. 28, 16 p. (2019; Zbl 1458.37098) Full Text: DOI OpenURL
Boonklurb, Ratinan; Neammai, Julaluk; Sukkrasanti, Vasana; Tantasuparuk, Theeruth Necessary and sufficient conditions for existence of an equilibrium and a periodic of prime period 2 solution of a certain rational difference equation. (English) Zbl 1465.39005 Chamchuri J. Math. 10, 1-13 (2018). MSC: 39A23 39A30 PDF BibTeX XML Cite \textit{R. Boonklurb} et al., Chamchuri J. Math. 10, 1--13 (2018; Zbl 1465.39005) Full Text: Link OpenURL
Abo-Zeid, R.; Al-Shabi, M. A. Global behavior of a fourth order rational difference equation. (English) Zbl 1447.39007 Thai J. Math. 16, No. 3, 665-674 (2018). MSC: 39A30 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{M. A. Al-Shabi}, Thai J. Math. 16, No. 3, 665--674 (2018; Zbl 1447.39007) Full Text: Link OpenURL
Camouzis, E.; Kollias, H.; Leventides, I. Stable manifold market sequences. (English) Zbl 1406.91006 J. Dyn. Games 5, No. 2, 165-185 (2018). MSC: 91A06 91B50 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Dyn. Games 5, No. 2, 165--185 (2018; Zbl 1406.91006) Full Text: DOI OpenURL
Okumuş, İnci; Soykan, Yüksel Dynamical behavior of a system of three-dimensional nonlinear difference equations. (English) Zbl 1446.39014 Adv. Difference Equ. 2018, Paper No. 223, 15 p. (2018). MSC: 39A22 39A30 PDF BibTeX XML Cite \textit{İ. Okumuş} and \textit{Y. Soykan}, Adv. Difference Equ. 2018, Paper No. 223, 15 p. (2018; Zbl 1446.39014) Full Text: DOI OpenURL
Chatterjee, Esha; Hassan, Sk. Sarif On the asymptotic character of a generalized rational difference equation. (English) Zbl 1396.39015 Discrete Contin. Dyn. Syst. 38, No. 4, 1707-1718 (2018). MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{E. Chatterjee} and \textit{Sk. S. Hassan}, Discrete Contin. Dyn. Syst. 38, No. 4, 1707--1718 (2018; Zbl 1396.39015) Full Text: DOI OpenURL
Gümüş, M.; Abo-Zeid, R. On the solutions of a \((2k+2)\)th order difference equation. (English) Zbl 1383.39004 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 25, No. 2, 129-143 (2018). MSC: 39A10 PDF BibTeX XML Cite \textit{M. Gümüş} and \textit{R. Abo-Zeid}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 25, No. 2, 129--143 (2018; Zbl 1383.39004) Full Text: Link OpenURL
Abo-Zeid, R. Forbidden set and solutions of a higher order difference equation. (English) Zbl 1390.39006 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 25, No. 2, 75-84 (2018). MSC: 39A10 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 25, No. 2, 75--84 (2018; Zbl 1390.39006) Full Text: Link OpenURL
Gümüş, Mehmet; Abo-Zeid, Raafat; Öcalan, Özkan Dynamical behavior of a third-order difference equation with arbitrary powers. (English) Zbl 1384.39007 Kyungpook Math. J. 57, No. 2, 251-263 (2017). Reviewer: Ioannis Dassios (Thrakomakedones) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{M. Gümüş} et al., Kyungpook Math. J. 57, No. 2, 251--263 (2017; Zbl 1384.39007) Full Text: DOI OpenURL
Dekkar, Imane; Touafek, Nouressadat; Yazlik, Yasin Global stability of a third-order nonlinear system of difference equations with period-two coefficients. (English) Zbl 1370.39007 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 2, 325-347 (2017). Reviewer: Yuming Chen (Waterloo) MSC: 39A30 39A21 39A22 39A23 39A20 PDF BibTeX XML Cite \textit{I. Dekkar} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 111, No. 2, 325--347 (2017; Zbl 1370.39007) Full Text: DOI OpenURL
Balibrea, Francisco; Cascales, Antonio Li-Yorke chaos in perturbed rational difference equations. (English) Zbl 1355.39026 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 49-61 (2016). MSC: 39A33 39A20 92D25 PDF BibTeX XML Cite \textit{F. Balibrea} and \textit{A. Cascales}, Springer Proc. Math. Stat. 180, 49--61 (2016; Zbl 1355.39026) Full Text: DOI OpenURL
Bula, Inese Periodic solutions of the second order quadratic rational difference equation \(x_{n+1}=\frac{\alpha }{(1+x_n)x_{n-1}} \). (English) Zbl 1355.39020 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 29-47 (2016). MSC: 39A23 39A20 PDF BibTeX XML Cite \textit{I. Bula}, Springer Proc. Math. Stat. 180, 29--47 (2016; Zbl 1355.39020) Full Text: DOI OpenURL
Anisimova, Aija On the second order rational difference equation \(x_{n+1}=\beta +\frac{1}{x_n x_{n-1}}\). (English) Zbl 1355.39013 Alsedà i Soler, Lluís (ed.) et al., Difference equations, discrete dynamical systems and applications, ICDEA, Barcelona, Spain, July 23–27, 2012. Proceedings of the 18th international conference. Berlin: Springer (ISBN 978-3-662-52926-3/hbk; 978-3-662-52927-0/ebook). Springer Proceedings in Mathematics & Statistics 180, 1-14 (2016). MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{A. Anisimova}, Springer Proc. Math. Stat. 180, 1--14 (2016; Zbl 1355.39013) Full Text: DOI OpenURL
Psarros, N.; Papaschinopoulos, G.; Schinas, C. J. Semistability of two systems of difference equations using centre manifold theory. (English) Zbl 1364.39017 Math. Methods Appl. Sci. 39, No. 18, 5216-5222 (2016). Reviewer: Miloš Čanak (Beograd) MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{N. Psarros} et al., Math. Methods Appl. Sci. 39, No. 18, 5216--5222 (2016; Zbl 1364.39017) Full Text: DOI OpenURL
Khan, A. Q.; Qureshi, M. N. Stability analysis of a discrete biological model. (English) Zbl 1342.39017 Int. J. Biomath. 9, No. 2, Article ID 1650021, 19 p. (2016). Reviewer: Fei Xue (Hartford) MSC: 39A30 39A10 92D25 39A12 PDF BibTeX XML Cite \textit{A. Q. Khan} and \textit{M. N. Qureshi}, Int. J. Biomath. 9, No. 2, Article ID 1650021, 19 p. (2016; Zbl 1342.39017) Full Text: DOI OpenURL
Bektešević, Jasmin; Kulenović, Mustafa R. S.; Pilav, Esmir Global dynamics of cubic second order difference equation in the first quadrant. (English) Zbl 1422.39004 Adv. Difference Equ. 2015, Paper No. 176, 38 p. (2015). MSC: 39A10 39A30 65L12 65L20 37E99 37D10 PDF BibTeX XML Cite \textit{J. Bektešević} et al., Adv. Difference Equ. 2015, Paper No. 176, 38 p. (2015; Zbl 1422.39004) Full Text: DOI OpenURL
Khan, Abdul; Qureshi, Muhammad Dynamics of a modified Nicholson-Bailey host-parasitoid model. (English) Zbl 1390.39014 Adv. Difference Equ. 2015, Paper No. 23, 15 p. (2015). MSC: 39A10 PDF BibTeX XML Cite \textit{A. Khan} and \textit{M. Qureshi}, Adv. Difference Equ. 2015, Paper No. 23, 15 p. (2015; Zbl 1390.39014) Full Text: DOI OpenURL
Elsayed, E. M.; Ibrahim, T. F. Solutions and periodicity of a rational recursive sequences of order five. (English) Zbl 1308.39002 Bull. Malays. Math. Sci. Soc. (2) 38, No. 1, 95-112 (2015). MSC: 39A10 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{T. F. Ibrahim}, Bull. Malays. Math. Sci. Soc. (2) 38, No. 1, 95--112 (2015; Zbl 1308.39002) Full Text: DOI OpenURL
Qureshi, Muhammad; Khan, Abdul; Din, Qamar Asymptotic behavior of a Nicholson-Bailey model. (English) Zbl 1343.39009 Adv. Difference Equ. 2014, Paper No. 62, 11 p. (2014). MSC: 39A10 40A05 PDF BibTeX XML Cite \textit{M. Qureshi} et al., Adv. Difference Equ. 2014, Paper No. 62, 11 p. (2014; Zbl 1343.39009) Full Text: DOI OpenURL
Huang, Ying Sue; Knopf, Peter M. Mappings with a single critical point and applications to rational difference equations. (English) Zbl 1319.39004 J. Difference Equ. Appl. 20, No. 4, 641-663 (2014). MSC: 39A13 PDF BibTeX XML Cite \textit{Y. S. Huang} and \textit{P. M. Knopf}, J. Difference Equ. Appl. 20, No. 4, 641--663 (2014; Zbl 1319.39004) Full Text: DOI OpenURL
Allen, L. J. S.; Kocic, V. L. Resonance in Beverton-Holt population models with periodic and random coefficients. (English) Zbl 1295.39012 J. Difference Equ. Appl. 20, No. 5-6, 925-946 (2014). Reviewer: Peter Zabreiko (Minsk) MSC: 39A23 39A22 39A50 92D25 39A20 PDF BibTeX XML Cite \textit{L. J. S. Allen} and \textit{V. L. Kocic}, J. Difference Equ. Appl. 20, No. 5--6, 925--946 (2014; Zbl 1295.39012) Full Text: DOI OpenURL
Papaschinopoulos, G.; Fotiades, N.; Schinas, C. J. On a system of difference equations including negative exponential terms. (English) Zbl 1291.39040 J. Difference Equ. Appl. 20, No. 5-6, 717-732 (2014). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A30 39A10 39A22 PDF BibTeX XML Cite \textit{G. Papaschinopoulos} et al., J. Difference Equ. Appl. 20, No. 5--6, 717--732 (2014; Zbl 1291.39040) Full Text: DOI OpenURL
Papaschinopoulos, G.; Schinas, C. J.; Ellina, G. On the dynamics of the solutions of a biological model. (English) Zbl 1295.39007 J. Difference Equ. Appl. 20, No. 5-6, 694-705 (2014). Reviewer: Peter Zabreiko (Minsk) MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{G. Papaschinopoulos} et al., J. Difference Equ. Appl. 20, No. 5--6, 694--705 (2014; Zbl 1295.39007) Full Text: DOI OpenURL
Cima, Anna; Gasull, Armengol; Mañosa, Víctor Integrability and non-integrability of periodic non-autonomous Lyness recurrences. (English) Zbl 1288.39006 Dyn. Syst. 28, No. 4, 518-538 (2013). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A33 39A23 PDF BibTeX XML Cite \textit{A. Cima} et al., Dyn. Syst. 28, No. 4, 518--538 (2013; Zbl 1288.39006) Full Text: DOI arXiv Link OpenURL
He, Zhimin; Qiu, Jia Neimark-Sacker bifurcation of a third-order rational difference equation. (English) Zbl 1274.39034 J. Difference Equ. Appl. 19, No. 9, 1513-1522 (2013). MSC: 39A28 PDF BibTeX XML Cite \textit{Z. He} and \textit{J. Qiu}, J. Difference Equ. Appl. 19, No. 9, 1513--1522 (2013; Zbl 1274.39034) Full Text: DOI OpenURL
Atawna, S.; Abu-Saris, R.; Hashim, I.; Ismail, E. S. On the period-two cycles of \(x_{n + 1} = (\alpha + \beta x_n + \gamma x_{n - k})/(A + Bx_n + Cx_{n - k})\). (English) Zbl 1275.39004 Abstr. Appl. Anal. 2013, Article ID 179423, 10 p. (2013). MSC: 39A23 39A20 39A30 PDF BibTeX XML Cite \textit{S. Atawna} et al., Abstr. Appl. Anal. 2013, Article ID 179423, 10 p. (2013; Zbl 1275.39004) Full Text: DOI OpenURL
Abbas, Mujahid; Berzig, Maher Global attractivity results on complete ordered metric spaces for third-order difference equations. (English) Zbl 1268.39025 Int. J. Anal. 2013, Article ID 486357, 12 p. (2013). MSC: 39A70 47H10 PDF BibTeX XML Cite \textit{M. Abbas} and \textit{M. Berzig}, Int. J. Anal. 2013, Article ID 486357, 12 p. (2013; Zbl 1268.39025) Full Text: DOI OpenURL
Basu, Sukanya Global behaviour of solutions to a class of second-order rational difference equations when prime period-two solutions exist. (English) Zbl 1337.39002 J. Difference Equ. Appl. 19, No. 6, 898-926 (2013). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A20 39A23 39A05 PDF BibTeX XML Cite \textit{S. Basu}, J. Difference Equ. Appl. 19, No. 6, 898--926 (2013; Zbl 1337.39002) Full Text: DOI OpenURL
Harry, April J.; Kent, Candace M.; Kocic, Vlajko L. Global behavior of solutions of a periodically forced sigmoid Beverton-Holt model. (English) Zbl 1448.92194 J. Biol. Dyn. 6, No. 2, 212-234 (2012). MSC: 92D25 39A23 39A30 PDF BibTeX XML Cite \textit{A. J. Harry} et al., J. Biol. Dyn. 6, No. 2, 212--234 (2012; Zbl 1448.92194) Full Text: DOI OpenURL
Mazrooei-Sebdani, Reza Homogeneous rational difference equations of degree 1: convergence, monotone and oscillatory solutions for second- and third-order cases. (English) Zbl 1261.39014 J. Difference Equ. Appl. 18, No. 12, 1979-2018 (2012). Reviewer: Pavel Rehak (Brno) MSC: 39A20 39A23 39A22 39A21 PDF BibTeX XML Cite \textit{R. Mazrooei-Sebdani}, J. Difference Equ. Appl. 18, No. 12, 1979--2018 (2012; Zbl 1261.39014) Full Text: DOI OpenURL
Hogan, Emilie; Zeilberger, Doron A new algorithm for proving global asymptotic stability of rational difference equations. (English) Zbl 1266.39016 J. Difference Equ. Appl. 18, No. 11, 1853-1873 (2012). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A30 37C75 26D05 39A20 65Q10 PDF BibTeX XML Cite \textit{E. Hogan} and \textit{D. Zeilberger}, J. Difference Equ. Appl. 18, No. 11, 1853--1873 (2012; Zbl 1266.39016) Full Text: DOI arXiv OpenURL
Atawna, S.; Abu-Saris, R.; Hashim, I. Local stability of period two cycles of second order rational difference equation. (English) Zbl 1255.39013 Discrete Dyn. Nat. Soc. 2012, Article ID 969813, 11 p. (2012). MSC: 39A30 PDF BibTeX XML Cite \textit{S. Atawna} et al., Discrete Dyn. Nat. Soc. 2012, Article ID 969813, 11 p. (2012; Zbl 1255.39013) Full Text: DOI OpenURL
Abo-Zeid, R. Global attractivity of a higher-order difference equation. (English) Zbl 1248.39010 Discrete Dyn. Nat. Soc. 2012, Article ID 930410, 11 p. (2012). MSC: 39A21 39A22 39A30 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Discrete Dyn. Nat. Soc. 2012, Article ID 930410, 11 p. (2012; Zbl 1248.39010) Full Text: DOI OpenURL
Huang, Ying Sue; Knopf, Peter M. Global convergence properties of first-order homogeneous systems of rational difference equations. (English) Zbl 1259.39012 J. Difference Equ. Appl. 18, No. 10, 1683-1707 (2012). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{Y. S. Huang} and \textit{P. M. Knopf}, J. Difference Equ. Appl. 18, No. 10, 1683--1707 (2012; Zbl 1259.39012) Full Text: DOI OpenURL
Camouzis, E.; Kent, C. M.; Ladas, G.; Lynd, C. D. On the global character of solutions of the system: \(x_{n+1}=\frac{\alpha_1+y_n}{x_n}\) and \(y_{n+1}=\frac{\alpha_2+\beta_2x_n+\gamma_2y_n}{A_2+B_2x_n+C_2y_n}\). (English) Zbl 1259.39009 J. Difference Equ. Appl. 18, No. 7, 1205-1252 (2012). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 18, No. 7, 1205--1252 (2012; Zbl 1259.39009) Full Text: DOI OpenURL
Elsayed, E. M.; El-Dessoky, M. M.; Alotaibi, Abdullah On the solutions of a general system of difference equations. (English) Zbl 1244.39001 Discrete Dyn. Nat. Soc. 2012, Article ID 892571, 12 p. (2012). MSC: 39A05 39A23 PDF BibTeX XML Cite \textit{E. M. Elsayed} et al., Discrete Dyn. Nat. Soc. 2012, Article ID 892571, 12 p. (2012; Zbl 1244.39001) Full Text: DOI OpenURL
Gallego, Francisco Balibrea; Vicente, Antonio Cascales Studies on the difference equation \(x _{ n+1} = 1/(x _{ n }+x _{ n - 2})\). (English) Zbl 1382.39017 J. Difference Equ. Appl. 18, No. 4, 607-625 (2012). MSC: 39A23 PDF BibTeX XML Cite \textit{F. B. Gallego} and \textit{A. C. Vicente}, J. Difference Equ. Appl. 18, No. 4, 607--625 (2012; Zbl 1382.39017) Full Text: DOI OpenURL
Camouzis, E.; Drymonis, E.; Ladas, G.; Tikjha, W. Patterns of boundedness of the rational system \(x _{n+1} = \alpha _{1} / (A _{1} + B _{1} x _{ n } + C _{1} y _{ n })\) and \(y _{n+1} = (\alpha _{2} + \beta _{2} x _{ n } + \gamma _{2} y _{ n }) / (A _{2} + B _{2} x _{ n } + C _{2} y _{ n })\). (English) Zbl 1242.39022 J. Difference Equ. Appl. 18, No. 1, 89-110 (2012). Reviewer: Yuming Chen (Waterloo) MSC: 39A22 39A20 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 18, No. 1, 89--110 (2012; Zbl 1242.39022) Full Text: DOI OpenURL
Huang, Ying Sue; Knopf, Peter M. Boundedness and some convergence properties of the difference equation \(x_{n+1}=\frac{\gamma x_{n-1} + \delta x_{n-2}}{B x_n + D x_{n-2}}\). (English) Zbl 1237.39006 J. Difference Equ. Appl. 18, No. 1, 27-55 (2012). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{Y. S. Huang} and \textit{P. M. Knopf}, J. Difference Equ. Appl. 18, No. 1, 27--55 (2012; Zbl 1237.39006) Full Text: DOI OpenURL
Palladino, Frank J.; Radin, Michael A. A trichotomy result for non-autonomous rational difference equations. (English) Zbl 1236.39016 Cent. Eur. J. Math. 9, No. 5, 1135-1142 (2011). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{F. J. Palladino} and \textit{M. A. Radin}, Cent. Eur. J. Math. 9, No. 5, 1135--1142 (2011; Zbl 1236.39016) Full Text: DOI OpenURL
Bedford, Eric; Kim, Kyounghee Linear fractional recurrences: periodicities and integrability. (English. French summary) Zbl 1267.37052 Ann. Fac. Sci. Toulouse, Math. (6) 20, Spec. Issue, 33-56 (2011). Reviewer: Anne-Sophie Kaloghiros (London) MSC: 37F99 37F10 14E05 PDF BibTeX XML Cite \textit{E. Bedford} and \textit{K. Kim}, Ann. Fac. Sci. Toulouse, Math. (6) 20, 33--56 (2011; Zbl 1267.37052) Full Text: DOI arXiv Numdam EuDML OpenURL
Sasu, Bogdan Input-output control systems and dichotomy of variational difference equations. (English) Zbl 1221.93169 J. Difference Equ. Appl. 17, No. 6, 889-913 (2011). MSC: 93C55 39A20 93D25 34D09 PDF BibTeX XML Cite \textit{B. Sasu}, J. Difference Equ. Appl. 17, No. 6, 889--913 (2011; Zbl 1221.93169) Full Text: DOI OpenURL
Huang, Ying Sue; Knopf, Peter M. Contracting invariant intervals and convergence properties of difference equations. (English) Zbl 1214.39002 J. Difference Equ. Appl. 17, No. 1-2, 85-102 (2011). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A10 PDF BibTeX XML Cite \textit{Y. S. Huang} and \textit{P. M. Knopf}, J. Difference Equ. Appl. 17, No. 1--2, 85--102 (2011; Zbl 1214.39002) Full Text: DOI OpenURL
Camouzis, E.; Grove, E. A.; Ladas, G.; Schultz, S. W. Periodicities which preserve and periodicities which destroy boundedness. (English) Zbl 1220.39015 Differ. Equ. Dyn. Syst. 18, No. 1-2, 19-28 (2010). Reviewer: Bogdan Sasu (Timişoara) MSC: 39A23 39A20 39A22 PDF BibTeX XML Cite \textit{E. Camouzis} et al., Differ. Equ. Dyn. Syst. 18, No. 1--2, 19--28 (2010; Zbl 1220.39015) Full Text: DOI OpenURL
Amleh, A. M.; Camouzis, E.; Ladas, G.; Radin, M. A. Patterns of boundedness of a rational system in the plane. (English) Zbl 1201.39004 J. Difference Equ. Appl. 16, No. 10, 1197-1236 (2010). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A10 39A22 39A23 PDF BibTeX XML Cite \textit{A. M. Amleh} et al., J. Difference Equ. Appl. 16, No. 10, 1197--1236 (2010; Zbl 1201.39004) Full Text: DOI OpenURL
Tang, Guo-Mei; Hu, Lin-Xia; Jia, Xiu-Mei Dynamics of a higher-order nonlinear difference equation. (English) Zbl 1198.39030 Discrete Dyn. Nat. Soc. 2010, Article ID 534947, 15 p. (2010). MSC: 39A30 39A22 39A20 PDF BibTeX XML Cite \textit{G.-M. Tang} et al., Discrete Dyn. Nat. Soc. 2010, Article ID 534947, 15 p. (2010; Zbl 1198.39030) Full Text: DOI EuDML OpenURL
Jia, Xiu-Mei; Hu, Lin-Xia; Li, Wan-Tong Dynamics of a rational difference equation. (English) Zbl 1192.39010 Adv. Difference Equ. 2010, Article ID 970720, 14 p. (2010). MSC: 39A22 PDF BibTeX XML Cite \textit{X.-M. Jia} et al., Adv. Difference Equ. 2010, Article ID 970720, 14 p. (2010; Zbl 1192.39010) Full Text: DOI EuDML OpenURL
Gülpinar, Meseret Tuba; Bayram, Mustafa Global asymptotic stability for a fourth-order rational difference equation. (English) Zbl 1178.39025 Discrete Dyn. Nat. Soc. 2009, Article ID 616982, 7 p. (2009). MSC: 39A30 39A20 PDF BibTeX XML Cite \textit{M. T. Gülpinar} and \textit{M. Bayram}, Discrete Dyn. Nat. Soc. 2009, Article ID 616982, 7 p. (2009; Zbl 1178.39025) Full Text: DOI EuDML OpenURL
Burgić, Dž.; Kalabušić, S.; Kulenović, M. R. S. Global attractivity results for mixed-monotone mappings in partially ordered complete metric spaces. (English) Zbl 1168.54327 Fixed Point Theory Appl. 2009, Article ID 762478, 17 p. (2009). MSC: 54H25 PDF BibTeX XML Cite \textit{Dž. Burgić} et al., Fixed Point Theory Appl. 2009, Article ID 762478, 17 p. (2009; Zbl 1168.54327) Full Text: DOI OpenURL
Camouzis, E.; Kulenović, M. R. S.; Ladas, G.; Merino, O. Rational systems in the plane. (English) Zbl 1169.39010 J. Difference Equ. Appl. 15, No. 3, 303-323 (2009). Reviewer: Sui Sun Cheng (Hsinchu) MSC: 39A20 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 15, No. 3, 303--323 (2009; Zbl 1169.39010) Full Text: DOI OpenURL
Camouzis, E. Global convergence in periodically forced rational equations. (English) Zbl 1162.39001 J. Difference Equ. Appl. 14, No. 10-11, 1011-1033 (2008). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. Camouzis}, J. Difference Equ. Appl. 14, No. 10--11, 1011--1033 (2008; Zbl 1162.39001) Full Text: DOI OpenURL
Camouzis, E.; Chatterjee, E.; Ladas, G. On the dynamics of \(x_{n+1}= \frac {\delta x-{n-2}+x_{n-3}}{A+x_{n-3}}\). (English) Zbl 1118.39001 J. Math. Anal. Appl. 331, No. 1, 230-239 (2007). Reviewer: Costică Moroşanu (Iaşi) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Math. Anal. Appl. 331, No. 1, 230--239 (2007; Zbl 1118.39001) Full Text: DOI OpenURL
Camouzis, E.; Ladas, G. When does local asymptotic stability imply global attractivity in rational equations? (English) Zbl 1105.39001 J. Difference Equ. Appl. 12, No. 8, 863-885 (2006). Reviewer: Raghib Abu-Saris (Sharjah) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. Camouzis} and \textit{G. Ladas}, J. Difference Equ. Appl. 12, No. 8, 863--885 (2006; Zbl 1105.39001) Full Text: DOI OpenURL