Okawa, Hirotada; Fujisawa, Kotaro; Yamamoto, Yu; Hirai, Ryosuke; Yasutake, Nobutoshi; Nagakura, Hiroki; Yamada, Shoichi The W4 method: a new multi-dimensional root-finding scheme for nonlinear systems of equations. (English) Zbl 07603734 Appl. Numer. Math. 183, 157-172 (2023). MSC: 65H10 PDF BibTeX XML Cite \textit{H. Okawa} et al., Appl. Numer. Math. 183, 157--172 (2023; Zbl 07603734) Full Text: DOI arXiv OpenURL
Pan, Jianhua; Chen, Yu-Yen; Fan, Liang-Shih Second-order unconditional positive preserving schemes for non-equilibrium reactive flows with mass and mole balance. (English) Zbl 07513831 J. Comput. Phys. 441, Article ID 110477, 26 p. (2021). MSC: 76Mxx 65Mxx 65Lxx PDF BibTeX XML Cite \textit{J. Pan} et al., J. Comput. Phys. 441, Article ID 110477, 26 p. (2021; Zbl 07513831) Full Text: DOI arXiv OpenURL
Ahmad, Fayyaz; Ullah, Malik Zaka; Ahmad, Shamshad; Alshomrani, Ali Saleh; Alqahtani, Aisha M.; Alzaben, L. Multi-step preconditioned Newton methods for solving systems of nonlinear equations. (English) Zbl 1444.65021 S\(\vec{\text{e}}\)MA J. 75, No. 1, 127-137 (2018). MSC: 65H10 PDF BibTeX XML Cite \textit{F. Ahmad} et al., S\(\vec{\text{e}}\)MA J. 75, No. 1, 127--137 (2018; Zbl 1444.65021) Full Text: DOI OpenURL
Ahmad, Fayyaz Multi-step derivative-free preconditioned Newton method for solving systems of nonlinear equations. (English) Zbl 1444.65020 S\(\vec{\text{e}}\)MA J. 75, No. 1, 45-56 (2018). MSC: 65H10 65H20 PDF BibTeX XML Cite \textit{F. Ahmad}, S\(\vec{\text{e}}\)MA J. 75, No. 1, 45--56 (2018; Zbl 1444.65020) Full Text: DOI Link OpenURL
Ahmad, Fayyaz; Bhutta, Toseef Akhter; Shoaib, Umar; Zaka Ullah, Malik; Alshomrani, Ali Saleh; Ahmad, Shamshad; Ahmad, Shahid A preconditioned iterative method for solving systems of nonlinear equations having unknown multiplicity. (English) Zbl 1461.65082 Algorithms (Basel) 10, No. 1, Paper No. 17, 9 p. (2017). MSC: 65H10 PDF BibTeX XML Cite \textit{F. Ahmad} et al., Algorithms (Basel) 10, No. 1, Paper No. 17, 9 p. (2017; Zbl 1461.65082) Full Text: DOI OpenURL
Ahmad, Fayyaz; Serra-Capizzano, S.; Ullah, Malik Zaka; Al-Fhaid, A. S. A family of iterative methods for solving systems of nonlinear equations having unknown multiplicity. (English) Zbl 1461.65083 Algorithms (Basel) 9, No. 1, Paper No. 5, 10 p. (2016). MSC: 65H10 PDF BibTeX XML Cite \textit{F. Ahmad} et al., Algorithms (Basel) 9, No. 1, Paper No. 5, 10 p. (2016; Zbl 1461.65083) Full Text: DOI OpenURL
Ahmadabadi, M. Nili; Ahmad, F.; Yuan, G.; Li, Xian. Solving systems of nonlinear equations using decomposition technique. (English) Zbl 1408.65028 J. Linear Topol. Algebra 5, No. 3, 187-198 (2016). Reviewer: Nikolay Kyurkchiev (Plovdiv) MSC: 65H10 PDF BibTeX XML Cite \textit{M. N. Ahmadabadi} et al., J. Linear Topol. Algebra 5, No. 3, 187--198 (2016; Zbl 1408.65028) Full Text: Link OpenURL
Barrett, John W.; Garcke, Harald; Nürnberg, Robert The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute. (English) Zbl 1218.65105 Numer. Methods Partial Differ. Equations 27, No. 1, 1-30 (2011). Reviewer: Juan Monterde (Burjasot) MSC: 65M60 65M50 65M12 35K55 PDF BibTeX XML Cite \textit{J. W. Barrett} et al., Numer. Methods Partial Differ. Equations 27, No. 1, 1--30 (2011; Zbl 1218.65105) Full Text: DOI Link OpenURL
Hueso, José L.; Martínez, Eulalia; Torregrosa, Juan R. Modified Newton’s method for systems of nonlinear equations with singular Jacobian. (English) Zbl 1159.65050 J. Comput. Appl. Math. 224, No. 1, 77-83 (2009). Reviewer: Jiří Vaníček (Praha) MSC: 65H10 PDF BibTeX XML Cite \textit{J. L. Hueso} et al., J. Comput. Appl. Math. 224, No. 1, 77--83 (2009; Zbl 1159.65050) Full Text: DOI OpenURL