×

zbMATH — the first resource for mathematics

Global integration of differential equations through Lobatto quadrature. (English) Zbl 0122.12204

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bôcher, M.,Introduction to the theory of Fourier’s series. Ann. of Math. 7, 1905/06, 81–152. · JFM 37.0285.01 · doi:10.2307/1967238
[2] Collatz, L., Einige Anwendungen funktionsanalytischer Methoden in der praktischen Analysis. Z. Angew. Math. Mech. 4, 1953, 327–357. · Zbl 0051.09502
[3] Erdös, P. and Turán, P.,On interpolation. I. Quadrature-and mean-convergence in the Lagrange interpolation. Ann. of Math., 38, 1937, 142–155. · Zbl 0016.10604 · doi:10.2307/1968516
[4] Faddeeva, V. N.,Computational methods of linear algebra. Dover, New York, 1959. · Zbl 0086.10802
[5] Fejér, L., Lagrangesche Interpolation und die zugehörigen konjugierten Punkte. Math. Ann. 106, 1932, 1–55. · JFM 58.1063.01 · doi:10.1007/BF01455875
[6] Grünwald, G.,On the theory of interpolation. Acta Math. 75, 1943, 219–245. · Zbl 0028.05001 · doi:10.1007/BF02404108
[7] Henrici, P.,Discrete variable methods in ordinary differential equations. Wiley, New York - London, 1961. · Zbl 0112.34901
[8] Rabinowitz, P.,Abscissas and weights for Lobatto quadrature of high order. Math. Comp. 14, 1960, 47–52. · Zbl 0096.10203 · doi:10.1090/S0025-5718-1960-0110194-6
[9] Shohat, J.,On mechanical quadratures, in particular, with positive coefficients. Trans. Amer. Math. Soc. 42, 1937, 461–496. · JFM 63.0960.02 · doi:10.1090/S0002-9947-1937-1501930-6
[10] Stone, M. H.,Developments in Legendre polynomials. Ann. of Math. 27, 1925/26, 315–329. · JFM 52.0279.03 · doi:10.2307/1967683
[11] Szegö, G.,Orthogonal polynomials. Am. Math. Soc. Colloquium Publications, 23, New York, 1959. · Zbl 0089.27501
[12] Tricomi, F. G.,Vorlesungen über Orthogonalreihen. Springer, Berlin- Göttingen - Heidelberg, 1955. · Zbl 0065.29601
[13] Young, W. H.,Connexion between Legendre series and Fourier series. Proc. London Math. Soc. 18, 1920, 141–162. · JFM 47.0336.02 · doi:10.1112/plms/s2-18.1.141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.