×

Convectons in a rotating fluid layer. (English) Zbl 1284.76139

Summary: Two-dimensional convection in a plane layer bounded by stress-free perfectly conducting horizontal boundaries and rotating uniformly about the vertical is considered. Time-independent spatially localized structures, called convectons, of even and odd parity are computed. The convectons are embedded within a self-generated shear layer with a compensating shear flow outside the structure. These states are organized within a bifurcation structure called slanted snaking and may be present even when periodic convection sets in supercritically. These interesting properties are traced to the presence of a conserved quantity and hence to the use of stress-free boundary conditions.

MSC:

76E06 Convection in hydrodynamic stability
76E07 Rotation in hydrodynamic stability
76U05 General theory of rotating fluids
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1103/PhysRevA.29.2921 · doi:10.1103/PhysRevA.29.2921
[2] Kai, Pattern Formation in Complex Dissipative Systems pp 309– (1992)
[3] DOI: 10.1016/j.physleta.2006.08.072 · Zbl 1236.35144 · doi:10.1016/j.physleta.2006.08.072
[4] DOI: 10.1016/0167-2789(88)90024-3 · Zbl 0644.45004 · doi:10.1016/0167-2789(88)90024-3
[5] DOI: 10.1016/S0375-9601(99)00573-3 · Zbl 0947.76096 · doi:10.1016/S0375-9601(99)00573-3
[6] DOI: 10.1016/0167-2789(89)90043-2 · Zbl 0677.76046 · doi:10.1016/0167-2789(89)90043-2
[7] DOI: 10.1063/1.2837177 · Zbl 1182.76055 · doi:10.1063/1.2837177
[8] DOI: 10.1103/PhysRevE.78.046201 · doi:10.1103/PhysRevE.78.046201
[9] DOI: 10.1137/090762865 · Zbl 1201.35045 · doi:10.1137/090762865
[10] DOI: 10.1063/1.3626405 · doi:10.1063/1.3626405
[11] DOI: 10.1137/06067794X · Zbl 1159.76333 · doi:10.1137/06067794X
[12] Proc. Am. Math. Soc. 133 pp 1787– (2004)
[13] DOI: 10.1017/S0022112006000759 · Zbl 1122.76029 · doi:10.1017/S0022112006000759
[14] DOI: 10.1017/S0022112006002795 · Zbl 1105.76026 · doi:10.1017/S0022112006002795
[15] DOI: 10.1017/S0022112059000283 · Zbl 0086.40701 · doi:10.1017/S0022112059000283
[16] DOI: 10.1103/PhysRevE.65.056309 · doi:10.1103/PhysRevE.65.056309
[17] DOI: 10.1016/S0167-2789(00)00204-9 · Zbl 0974.35091 · doi:10.1016/S0167-2789(00)00204-9
[18] DOI: 10.1088/0951-7715/18/4/001 · Zbl 1095.35002 · doi:10.1088/0951-7715/18/4/001
[19] DOI: 10.1016/j.fluiddyn.2007.11.002 · Zbl 1148.76024 · doi:10.1016/j.fluiddyn.2007.11.002
[20] DOI: 10.1017/S0022112099006941 · Zbl 0957.76014 · doi:10.1017/S0022112099006941
[21] DOI: 10.1016/0167-2789(93)90156-U · Zbl 0769.34029 · doi:10.1016/0167-2789(93)90156-U
[22] DOI: 10.1016/j.physleta.2004.10.038 · Zbl 1123.35325 · doi:10.1016/j.physleta.2004.10.038
[23] DOI: 10.1080/03091929008219856 · doi:10.1080/03091929008219856
[24] DOI: 10.1103/PhysRevE.47.2536 · doi:10.1103/PhysRevE.47.2536
[25] DOI: 10.1103/PhysRevLett.104.104501 · doi:10.1103/PhysRevLett.104.104501
[26] DOI: 10.1007/978-1-4612-1558-5 · doi:10.1007/978-1-4612-1558-5
[27] DOI: 10.1016/S0375-9601(01)00793-9 · Zbl 1098.76545 · doi:10.1016/S0375-9601(01)00793-9
[28] DOI: 10.1086/511513 · doi:10.1086/511513
[29] DOI: 10.1017/S0956792507006894 · Zbl 1146.35012 · doi:10.1017/S0956792507006894
[30] DOI: 10.1088/0951-7715/15/6/315 · Zbl 1021.35010 · doi:10.1088/0951-7715/15/6/315
[31] DOI: 10.1088/0951-7715/13/4/317 · Zbl 0960.35007 · doi:10.1088/0951-7715/13/4/317
[32] DOI: 10.1029/98RG02739 · doi:10.1029/98RG02739
[33] DOI: 10.1063/1.874045 · doi:10.1063/1.874045
[34] DOI: 10.1063/1.868730 · Zbl 0836.76033 · doi:10.1063/1.868730
[35] DOI: 10.1088/0169-5983/44/3/031411 · Zbl 1309.76221 · doi:10.1088/0169-5983/44/3/031411
[36] DOI: 10.1017/jfm.2011.402 · Zbl 1241.76454 · doi:10.1017/jfm.2011.402
[37] DOI: 10.1063/1.3439672 · Zbl 1190.76077 · doi:10.1063/1.3439672
[38] DOI: 10.1016/S0020-7225(98)00041-X · Zbl 1210.76077 · doi:10.1016/S0020-7225(98)00041-X
[39] DOI: 10.1103/PhysRevE.85.026211 · doi:10.1103/PhysRevE.85.026211
[40] DOI: 10.1080/03091928308209045 · Zbl 0527.76038 · doi:10.1080/03091928308209045
[41] DOI: 10.1103/PhysRevA.46.4755 · doi:10.1103/PhysRevA.46.4755
[42] DOI: 10.1063/1.857710 · doi:10.1063/1.857710
[43] DOI: 10.1103/PhysRevLett.99.104503 · doi:10.1103/PhysRevLett.99.104503
[44] DOI: 10.1016/j.pss.2006.07.008 · doi:10.1016/j.pss.2006.07.008
[45] Hydrodynamic and Hydromagnetic Stability (1961)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.