Chen, Chuchu; Dang, Tonghe; Hong, Jialin An adaptive time-stepping fully discrete scheme for stochastic NLS equation: strong convergence and numerical asymptotics. (English) Zbl 1540.60161 Stochastic Processes Appl. 173, Article ID 104373, 24 p. (2024). MSC: 60H35 35Q55 60H15 65C30 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Zhang, Deng Stochastic nonlinear Schrödinger equations in the defocusing mass and energy critical cases. (English) Zbl 1538.35355 Ann. Appl. Probab. 33, No. 5, 3652-3705 (2023). MSC: 35Q55 35J10 60H15 35R60 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link
Zhang, Deng Strichartz and local smoothing estimates for stochastic dispersive equations with linear multiplicative noise. (English) Zbl 1507.35222 SIAM J. Math. Anal. 54, No. 6, 5981-6017 (2022). Reviewer: Vedran Sohinger (Coventry) MSC: 35Q41 35Q55 35R60 35S05 60H15 35B65 60J65 35A01 35A02 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Fatheddin, Parisa; Qiu, Zhaoyang Large deviations for nonlinear stochastic Schrödinger equation. (English) Zbl 1475.35317 Stochastic Anal. Appl. 39, No. 3, 456-482 (2021). MSC: 35Q55 35R60 60F10 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Meng, Lixin; Li, Jingyu; Tao, Jian Global energy solutions to a stochastic Schrödinger-Poisson system with multiplicative noise in two dimensions. (English) Zbl 1411.35294 Appl. Math. Comput. 300, 40-59 (2017). MSC: 35R60 60H15 35Q55 × Cite Format Result Cite Review PDF Full Text: DOI
Pinaud, Olivier A note on stochastic Schrödinger equations with fractional multiplicative noise. (English) Zbl 1290.60065 J. Differ. Equations 256, No. 4, 1467-1491 (2014). MSC: 60H15 × Cite Format Result Cite Review PDF Full Text: DOI arXiv
Gautier, Eric Exit from a basin of attraction for stochastic weakly damped nonlinear Schrödinger equations. (English) Zbl 1204.60056 Ann. Probab. 36, No. 3, 896-930 (2008). MSC: 60H15 60F10 35Q55 × Cite Format Result Cite Review PDF Full Text: DOI arXiv