×

Anisotropic hyperelastic modeling for face-centered cubic and diamond cubic structures. (English) Zbl 1423.74197

Summary: A new hyperelastic model for a crystal structure with face-centered cubic or diamond cubic system is proposed. The proposed model can be simply embedded into a nonlinear finite element analysis framework and does not require information of the crystal structure. The hyperelastic constitutive relation of the model is expressed as a polynomial-based strain energy density function. Nine strain invariants of the crystal structure are directly used as polynomial bases of the model. The hyperelastic material constants, which are the coefficients of the polynomials, are determined through a numerical simulation using the least square method. In the simulation, the Cauchy-Born rule and interatomic potentials are utilized to calculate reference data under various deformation conditions. As the fitting result, the hyperelastic material constants for silicon, germanium, and six transition metals (Ni, Pd, Pt, Cu, Ag, and Au) are provided. Furthermore, numerical examples are performed using the proposed hyperelastic model.

MSC:

74E15 Crystalline structure
74S05 Finite element methods applied to problems in solid mechanics

Software:

ReaxFF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Park, H. S.; Gall, K.; Zimmerman, J. A., Deformation of FCC nanowires by twinning and slip, J. Mech. Phys. Solids, 54, 1862-1881 (2006) · Zbl 1120.74864
[2] Wu, H. A., Molecular dynamics study of the mechanics of metal nanowires at finite temperature, Eur. J. Mech. A Solid, 25, 370-377 (2006) · Zbl 1087.74024
[3] Streitz, F. H.; Cammarata, R. C.; Sieradzki, K., Surface-stress effects on elastic properties. I, Thin metal films, Phys. Rev. B, 49, 10699-10706 (1994)
[4] Kim, W.; Cho, M., Surface effect on the self-equilibrium state and size-dependent elasticity of FC thin films, Modelling Simul. Mater. Sci. Eng., 18, 085006 (2010)
[5] Ericksen, J. L., On the Cauchy-Born rule, Math. Mech. Solids, 13, 199-220 (2008) · Zbl 1161.74305
[6] Zanzotto, G., The Cauchy-Born hypothesis, nonlinear elasticity and mechanical twinning in crystals, Acta Crystallogr. Sect. A, 52, 839-849 (1996)
[7] Tedmor, E. B., Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73, 1529-1563 (1996)
[8] Arroyo, M.; Belytschko, T., An atomistic-based finite deformation membrane for single layer crystalline films, J. Mech. Phys. Solids, 50, 1941-1977 (2002) · Zbl 1006.74061
[9] Park, H. S.; Klein, P. A.; Wagner, G. J., A surface Cauchy-Born model for nanoscale materials, Int. J. Numer. Methods Eng., 68, 1072-1095 (2006) · Zbl 1128.74005
[10] Jones, J. E., On the determination of molecular fields, Proc. R. Soc. Lond. Ser. A, 106, 463-477 (1924)
[11] Morse, P. M., Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev., 34, 57-64 (1929) · JFM 55.0539.02
[12] Daw, M. S.; Baskes, M. I., Embedded-atom method: derivation and application to impurities, surfaces and other defects in metals, Phys. Rev. B, 29, 6443-6453 (1984)
[13] Tersoff, J., New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, 37, 6991-7000 (1988)
[14] Duin, A. C.T.; Dasgupta, S.; Lorant, F.; Goddard, W. A., ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, 105, 9396-9409 (2001)
[15] Martin, J. W., Many-body forces in solids and the Brugger elastic constnats: II. Inner elastic constants, J. Phys. C: Solid State Phys., 8, 2858-2868 (1975)
[16] Tang, Z.; Zhao, H.; Li, G.; Aluru, N. R., Finite-temperature quasicontinuum method for multiscale analysis of silicon nanostructures, Phys. Rev. B, 74, 064110 (2006)
[17] Park, H. S.; Klein, P. A., A surface Cauchy-Born model for silicon nanostructures, Comput. Methods Appl. Mech. Engrg., 197, 3249-3260 (2008) · Zbl 1159.74312
[18] Treloar, L. R.G., The elasticity of a network of long-chain molecules-II, Trans. Faraday Soc., 39, 241-246 (1943)
[19] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 582-592 (1940) · JFM 66.1021.04
[20] Rivlin, R. S., Large elastic deformations of isotropic materials. VI. Further results in the theory of torsion, shear and flexure, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 242, 173-195 (1949) · Zbl 0035.41503
[21] Ogden, R. W., Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. Ser. A, 326, 565-584 (1972) · Zbl 0257.73034
[22] Yeoh, O. H., Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66, 754-771 (1993)
[23] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412 (1993) · Zbl 1355.74020
[24] Spensor, A. J.M, Continuum Theory of the Mechanics of Fiber-Reinforced Composites (1985), Springer: Springer New-York
[25] Weiss, J. A.; Maker, B. N.; Govindjee, S., Finite element implemenation of incompressible, transversely isotropic hyperelasticity, Comput. Methods Appl. Engrg., 135, 107-128 (1996) · Zbl 0893.73071
[26] Hozapfel, G. A.; Gasser, T. C.; Ogden, R. W., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elasticity, 61, 1-48 (2000) · Zbl 1023.74033
[27] Kaliske, M., A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains, Comput. Methods Appl. Mech. Engrg., 185, 225-243 (2000) · Zbl 0994.74016
[28] Pinsky, P. M.; van der Heide, D.; Chernyak, D., Computational modeling of mechanical anisotropy in the cornea and sclera, J. Cataract Refract. Surg., 31, 136-145 (2005)
[29] Pena, E.; Calvo, B.; Martinez, M. A.; Doblare, M., An anisotropic visco-hyperelastic model for ligaments at finite strains. Formulation and computational aspects, Int. J. Solids Struct., 44, 760-778 (2007) · Zbl 1176.74043
[30] Agoras, M.; Lopez-Pamies, O.; Castaneda, P. P., A general hyperelastic model for incompressible fiber-reinforced elastomers, J. Mech. Phys. Solids, 57, 268-286 (2009) · Zbl 1197.74025
[31] Treloar, L. R.G., Stress-strain data for vulcanized rubber under various types of deformation, Trans. Faraday Soc., 40, 59-70 (1944)
[32] Rivlin, R. S., Large elastic deformations of isotropic materials. I. Fundamental concepts, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 240, 459-490 (1948) · Zbl 0029.32605
[33] Rivlin, R. S., A note on the torsion of an incompressible highly-elastic cylinder, Proc. Camb. Phil. Soc., 45, 485-487 (1949) · Zbl 0033.40802
[34] Smith, G. F., Further results on the strain-energy function for anisotropic elastic materials, Arch. Ration. Mech. Anal., 10, 108-118 (1962) · Zbl 0100.37101
[35] Smith, G. F.; Rivlin, R. S., The strain-energy function for anisotropic elastic materials, Trans. Amer. Math. Soc., 88, 175-193 (1958) · Zbl 0089.23505
[36] Rivlin, R. S.; Saunders, D. W., Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 243, 251-288 (1951) · Zbl 0042.42505
[37] Jones, D. F.; Treloar, L. R.G., The properties of rubber in pure homogeneous strain, J. Phys. D: Appl. Phys., 8, 1285-1304 (1975)
[38] Ogden, R. W.; Saccomandi, G.; Sgura, I., Fitting hyperelastic models to experimental data, Comput. Mech., 34, 484-502 (2004) · Zbl 1109.74320
[39] Foiles, S. M.; Baskes, M. I.; Daw, M. S., Embedded-atom method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt and their alloys, Phys. Rev. B, 33, 7983-7991 (1986)
[40] Oh, D. J.; Johnson, R. A., Simple embedded atom method model for FCC and HCP metals, J. Mater. Res., 3, 471-478 (1988)
[41] Dingreville, R.; Kulkarni, A. J.; Zhou, M.; Qu, J., A semi-analytical method for quantifying the size-dependent elasticity of nanostructures, Modelling Simul. Mater. Sci. Eng., 16, 025002 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.