×

Rotating synchronization in three-dimensional chaotic systems. (English) Zbl 1260.34105

Summary: Projective synchronization investigates the synchronization of systems evolve in same orientation, however, in practice, the situation of same orientation is only minority, and the majority is different orientation. This paper investigates the latter, proposes the concept of rotating synchronization, and verifies its necessity and feasibility via theoretical analysis and numerical simulations. Three conclusions were elicited: first, in three-dimensional space, two arbitrary nonlinear chaotic systems who evolve in different orientation can realize synchronization at end; second, projective synchronization is a special case of rotating synchronization, so, the application fields of rotating synchronization is more broadly than that of the former; third, the overall evolving information can be reflected by single state variable’s evolving, it has self-similarity, this is the same as the basic idea of phase space reconstruction method, it indicates that we got the same result from different approach, so, our method and the phase space reconstruction method are verified each other.

MSC:

34D06 Synchronization of solutions to ordinary differential equations
34H10 Chaos control for problems involving ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevLett.64.821 · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821
[2] Nikolai F. R., Phys. Rev. E 51 pp 980–
[3] DOI: 10.1103/PhysRevE.68.036208 · doi:10.1103/PhysRevE.68.036208
[4] Michael G. R., Phys. Rev. Lett. 76 pp 1804–
[5] DOI: 10.1016/j.physleta.2004.06.077 · Zbl 1209.93118 · doi:10.1016/j.physleta.2004.06.077
[6] Michael G. R., Phys. Rev. Lett. 78 pp 4193–
[7] DOI: 10.1103/PhysRevLett.82.3042 · doi:10.1103/PhysRevLett.82.3042
[8] DOI: 10.1016/j.physleta.2006.02.049 · doi:10.1016/j.physleta.2006.02.049
[9] DOI: 10.1016/j.chaos.2005.12.009 · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[10] DOI: 10.1103/PhysRevE.63.027201 · doi:10.1103/PhysRevE.63.027201
[11] DOI: 10.1103/PhysRevE.66.046218 · doi:10.1103/PhysRevE.66.046218
[12] DOI: 10.1103/PhysRevE.64.036216 · doi:10.1103/PhysRevE.64.036216
[13] DOI: 10.1016/j.chaos.2006.05.050 · doi:10.1016/j.chaos.2006.05.050
[14] DOI: 10.1016/j.chaos.2006.04.047 · Zbl 1152.93407 · doi:10.1016/j.chaos.2006.04.047
[15] DOI: 10.1016/j.physleta.2007.05.028 · Zbl 1209.93105 · doi:10.1016/j.physleta.2007.05.028
[16] Hu M. F., Phys. Lett. A 72 pp 3228–
[17] DOI: 10.1016/j.chaos.2006.04.053 · Zbl 1142.93428 · doi:10.1016/j.chaos.2006.04.053
[18] DOI: 10.1016/j.physleta.2007.07.053 · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[19] DOI: 10.1016/j.cnsns.2006.07.012 · Zbl 1221.34121 · doi:10.1016/j.cnsns.2006.07.012
[20] DOI: 10.1016/j.chaos.2007.01.037 · Zbl 1146.37318 · doi:10.1016/j.chaos.2007.01.037
[21] DOI: 10.1016/j.physleta.2007.11.047 · Zbl 1220.70021 · doi:10.1016/j.physleta.2007.11.047
[22] DOI: 10.1016/j.physleta.2008.01.061 · Zbl 1220.34060 · doi:10.1016/j.physleta.2008.01.061
[23] DOI: 10.1016/j.chaos.2005.08.130 · Zbl 1144.37372 · doi:10.1016/j.chaos.2005.08.130
[24] DOI: 10.1016/j.chaos.2006.09.045 · doi:10.1016/j.chaos.2006.09.045
[25] DOI: 10.1016/j.chaos.2006.10.005 · Zbl 1153.37359 · doi:10.1016/j.chaos.2006.10.005
[26] DOI: 10.1103/PhysRevLett.45.712 · doi:10.1103/PhysRevLett.45.712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.