Gelu, Fasika Wondimu; Duressa, Gemechis File A uniformly convergent collocation method for singularly perturbed delay parabolic reaction-diffusion problem. (English) Zbl 1482.65193 Abstr. Appl. Anal. 2021, Article ID 8835595, 11 p. (2021). MSC: 65M70 65M06 65M12 35B25 35K57 35R10 PDF BibTeX XML Cite \textit{F. W. Gelu} and \textit{G. F. Duressa}, Abstr. Appl. Anal. 2021, Article ID 8835595, 11 p. (2021; Zbl 1482.65193) Full Text: DOI
Govindarao, L.; Mohapatra, J.; Das, A. A fourth-order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics. (English) Zbl 1475.65069 J. Appl. Math. Comput. 63, No. 1-2, 171-195 (2020). MSC: 65M06 65M12 PDF BibTeX XML Cite \textit{L. Govindarao} et al., J. Appl. Math. Comput. 63, No. 1--2, 171--195 (2020; Zbl 1475.65069) Full Text: DOI
Lekomtsev, Andrei The method of fractional steps for the numerical solution of a multidimensional heat conduction equation with delay for the case of variable coefficient of heat conductivity. (English) Zbl 1454.65061 Pinelas, Sandra (ed.) et al., Differential and difference equations with applications. Selected papers based on the presentations at the fourth international conference, ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019. Cham: Springer. Springer Proc. Math. Stat. 333, 105-121 (2020). MSC: 65M06 65M12 35K05 35R07 PDF BibTeX XML Cite \textit{A. Lekomtsev}, Springer Proc. Math. Stat. 333, 105--121 (2020; Zbl 1454.65061) Full Text: DOI
Haider, Syed Sabyel; Rehman, Mujeeb Ur; Abdeljawad, Thabet A transformation method for delta partial difference equations on discrete time scale. (English) Zbl 1459.39019 Math. Probl. Eng. 2020, Article ID 3902931, 14 p. (2020). MSC: 39A14 26E70 35R02 44A10 PDF BibTeX XML Cite \textit{S. S. Haider} et al., Math. Probl. Eng. 2020, Article ID 3902931, 14 p. (2020; Zbl 1459.39019) Full Text: DOI
Zhou, Yong; Ahmad, Bashir; Zhao, Yanyun; Alsaedi, Ahmed On multiplicity of solutions to nonlinear partial difference equations with delay. (English) Zbl 1446.39012 Adv. Difference Equ. 2018, Paper No. 200, 12 p. (2018). MSC: 39A14 39A12 PDF BibTeX XML Cite \textit{Y. Zhou} et al., Adv. Difference Equ. 2018, Paper No. 200, 12 p. (2018; Zbl 1446.39012) Full Text: DOI
Yuan, Chunhua; Zhang, Liang Oscillation criteria for a 2-D discrete system. (English) Zbl 1383.39014 Qual. Theory Dyn. Syst. 16, No. 2, 361-370 (2017). Reviewer: Eszter Gselmann (Debrecen) MSC: 39A21 39A14 PDF BibTeX XML Cite \textit{C. Yuan} and \textit{L. Zhang}, Qual. Theory Dyn. Syst. 16, No. 2, 361--370 (2017; Zbl 1383.39014) Full Text: DOI
Nategh, Mehdi; Baleanu, Dumitru; Taghizadeh, Elham; Gilani, Zahra Goli Almost local stability in discrete delayed chaotic systems. (English) Zbl 1377.39031 Nonlinear Dyn. 89, No. 4, 2393-2402 (2017). MSC: 39A33 37D45 39A30 PDF BibTeX XML Cite \textit{M. Nategh} et al., Nonlinear Dyn. 89, No. 4, 2393--2402 (2017; Zbl 1377.39031) Full Text: DOI
Pimenov, Vladimir; Hendy, Ahmed Numerical methods for a class of fractional advection-diffusion models with functional delay. (English) Zbl 1368.65145 Dimov, Ivan (ed.) et al., Numerical analysis and its applications. 6th international conference, NAA 2016, Lozenetz, Bulgaria, June 15–22, 2016. Revised selected papers. Cham: Springer (ISBN 978-3-319-57098-3/pbk; 978-3-319-57099-0/ebook). Lecture Notes in Computer Science 10187, 533-541 (2017). MSC: 65M06 35K20 35R11 65M12 PDF BibTeX XML Cite \textit{V. Pimenov} and \textit{A. Hendy}, Lect. Notes Comput. Sci. 10187, 533--541 (2017; Zbl 1368.65145) Full Text: DOI
Pimenov, Vladimir G.; Hendy, Ahmed S. Fractional analog of Crank-Nicholson method for the two sided space fractional partial equation with functional delay. (English) Zbl 1398.65217 Ural Math. J. 2, No. 1, 48-57 (2016). MSC: 65M06 35R10 65M12 PDF BibTeX XML Cite \textit{V. G. Pimenov} and \textit{A. S. Hendy}, Ural Math. J. 2, No. 1, 48--57 (2016; Zbl 1398.65217) Full Text: DOI MNR
Yuan, Chunhua; Liu, Shutang; Liu, Jian Exact oscillation regions for a partial difference equation. (English) Zbl 1343.39026 Adv. Difference Equ. 2015, Paper No. 100, 6 p. (2015). MSC: 39A21 39A14 PDF BibTeX XML Cite \textit{C. Yuan} et al., Adv. Difference Equ. 2015, Paper No. 100, 6 p. (2015; Zbl 1343.39026) Full Text: DOI
Lekomtsev, Andrey; Pimenov, Vladimir Convergence of the scheme with weights for the numerical solution of a heat conduction equation with delay for the case of variable coefficient of heat conductivity. (English) Zbl 1338.80017 Appl. Math. Comput. 256, 83-93 (2015). MSC: 80M20 65M06 80A20 PDF BibTeX XML Cite \textit{A. Lekomtsev} and \textit{V. Pimenov}, Appl. Math. Comput. 256, 83--93 (2015; Zbl 1338.80017) Full Text: DOI
Özpinar, Figen; Öztürk, Sermin; Koçak, Zeynep Fidan Oscillation for certain impulsive partial difference equations. (English) Zbl 1290.39009 Demonstr. Math. 47, No. 1, 79-102 (2014). MSC: 39A21 39A14 39A06 PDF BibTeX XML Cite \textit{F. Özpinar} et al., Demonstr. Math. 47, No. 1, 79--102 (2014; Zbl 1290.39009) Full Text: DOI
Xu, Li Hua; Yang, Jun Frequent oscillatory behavior of delay partial difference equations with positive and negative coefficients. (English) Zbl 1190.35014 Adv. Difference Equ. 2010, Article ID 606149, 15 p. (2010). MSC: 35B05 35R10 PDF BibTeX XML Cite \textit{L. H. Xu} and \textit{J. Yang}, Adv. Difference Equ. 2010, Article ID 606149, 15 p. (2010; Zbl 1190.35014) Full Text: DOI EuDML