×

A diffusion-inertia model for predicting dispersion and deposition of low-inertia particles in turbulent flows. (English) Zbl 1329.76145

Summary: The objective of the paper is twofold: (i) to present a model (the so-called diffusion-inertia model) for predicting dispersion and deposition of aerosol particles in two-phase turbulent flows and (ii) to examine the performance of this model as applied to the flows in straight ducts and circular bends. The model predictions compare reasonable well with both experimental data and Lagrangian tracking simulations coupled with fluid DNS or LES.

MSC:

76F99 Turbulence
76T99 Multiphase and multicomponent flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zaichik, L. I.; Pershukov, V. A.; Kozelev, M. V.; Vinberg, A. A.: Modeling of dynamics, heat transfer, and combustion in two-phase turbulent flows: 1. Isothermal flow, Exp. therm. Fluid sci. 15, 291-310 (1997)
[2] Zaichik, L. I.; Pershukov, V. A.; Kozelev, M. V.; Vinberg, A. A.: Modeling of dynamics, heat transfer, and combustion in two-phase turbulent flows: 2. Flows with heat transfer and combustion, Exp. therm. Fluid sci. 15, 311-322 (1997)
[3] L.I. Zaichik, S.L. Soloviev, A.P. Skibin, V.M. Alipchenkov, A diffusion-inertia model for predicting dispersion of low-inertia particles in turbulent flows, in: Proceedings of the Fifth International Conference on Multiphase Flow, Yokohama, Japan, 2004.
[4] Zaichik, L. I.: Modelling of the motion of particles in non-uniform turbulent flow using the equation for the probability density function, J. appl. Math. mech. 61, 127-133 (1997) · Zbl 1040.76512 · doi:10.1016/S0021-8928(97)00015-4
[5] Zaichik, L. I.: A statistical model of particle transport and heat transfer in turbulent shear flow, Phys. fluids 11, 1521-1534 (1999) · Zbl 1147.76544 · doi:10.1063/1.870015
[6] Zaichik, L. I.; Oesterlé, B.; Alipchenkov, V. M.: On the probability density function model for the transport of particles in anisotropic turbulent flow, Phys. fluids 16, 1956-1964 (2004) · Zbl 1186.76597 · doi:10.1063/1.1709774
[7] P. Nerisson, L. Ricciardi, O. Simonin, J. Fazileabasse, Modelling aerosol transport and deposition in a ventilated room, in: Proceedings of the Sixth International Conference on Multiphase Flow, Leipzig, Germany, 2004. · Zbl 1245.76149
[8] Druzhinin, O. A.: On the two-way interaction in two-dimensional particle-laden flows: the accumulation of particles and flow modification, J. fluid mech. 297, 49-76 (1995) · Zbl 0859.76072 · doi:10.1017/S0022112095003004
[9] Ferry, J.; Balachandar, S.: A fast Eulerian method for disperse two-phase flow, Int. J. Multiphase flow 27, 1199-1226 (2001) · Zbl 1137.76577 · doi:10.1016/S0301-9322(00)00069-0
[10] Rani, S. L.; Balachandar, S.: Evaluation of the equilibrium Eulerian approach for the evolution of particle concentration in isotropic turbulence, Int. J. Multiphase flow 29, 1793-1816 (2003) · Zbl 1136.76617 · doi:10.1016/j.ijmultiphaseflow.2003.09.005
[11] Shotorban, B.; Balachandar, S.: Particle concentration in homogeneous shear turbulence via Lagrangian and equilibrium Eulerian approaches, Phys. fluids 18, 065105 (2006)
[12] Zaichik, L. I.; Simonin, O.; Alipchenkov, V. M.: An Eulerian approach for large eddy simulation of particle transport in turbulent flows, J. turbul. 10, 4 (2009) · Zbl 1273.76237
[13] Talbot, L.; Cheng, R. K.; Schefer, R. W.; Willis, D. R.: Thermophoresis of particles in a heated boundary layer, J. fluid mech. 101, 737-758 (1980)
[14] Launder, B. E.; Spalding, D. B.: The numerical computation of turbulent flows, Comput. meth. Appl. mech. Eng. 3, 269-289 (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[15] Levich, V. G.: Physicochemical hydrodynamics, (1962)
[16] Kutateladze, S. S.: Near-wall turbulence, (1973)
[17] Kallio, G. A.; Reeks, M. W.: A numerical simulation of particle deposition in turbulent boundary layer, Int. J. Multiphase flow 15, 433-446 (1989)
[18] Mclaughlin, J. B.: Aerosol particle deposition in numerically simulated channel flow, Phys. fluids A 1, 1211-1224 (1989)
[19] Liu, B. Y. H.; Agarwal, J. K.: Experimental observation of aerosol deposition in turbulent flow, J. aerosol sci. 5, 145-155 (1974)
[20] Marchioli, C.; Giusti, A.; Salvetti, M. V.; Soldati, A.: Direct numerical simulation of particle wall transfer in upward turbulent pipe flow, Int. J. Multiphase flow 29, 1017-1038 (2003) · Zbl 1136.76571 · doi:10.1016/S0301-9322(03)00036-3
[21] Marchioli, C.; Picciotto, M.; Soldati, A.: Influence of gravity and lift on particle velocity statistics and transfer rates in turbulent vertical channel flow, Int. J. Multiphase flow 33, 227-251 (2007)
[22] Wang, Q.; Squires, K. D.; Chen, M.; Mclaughlin, J. B.: On the role of the lift force in turbulence simulations of particle deposition, Int. J. Multiphase flow 23, 749-763 (1997) · Zbl 1135.76578 · doi:10.1016/S0301-9322(97)00014-1
[23] Pui, D. Y. H.; Romay-Novas, F.; Liu, B. Y. H.: Experimental study of particle deposition in bends of circular cross-section, Aerosol sci. Technol. 7, 301-315 (1987)
[24] Breuer, M.; Baytekin, H. T.; Matida, E. A.: Prediction of aerosol deposition in \(90^\circ \) bends using LES and an efficient Lagrangian tracking method, J. aerosol sci. 37, 1407-1428 (2006)
[25] Berrouk, A. S.; Laurence, D.: Stochastic modelling of aerosol deposition for LES of \(90^\circ \) bend turbulent flow, Int. J. Heat fluid flow 29, 1010-1028 (2008)
[26] Mcfarland, A. R.; Gong, H.; Muyshondt, A.; Wente, W. B.; Anand, N. K.: Aerosol deposition in bends with turbulent flow, Environ. sci. Technol. 31, 3371-3377 (1997)
[27] Peters, T. M.; Leith, D.: Particle deposition in industrial duct bends, Ann. occup. Hyg. 48, 483-490 (2004)
[28] Zaichik, L. I.; Alipchenkov, V. M.; Sinaiski, E. G.: Particles in turbulent flows, (2008)
[29] O. Simonin, Second-moment prediction of dispersed-phase turbulence in particle-laden flows, in: Proceedings of Eighth Symposium on Turbulent Shear Flows, Munich, Germany, 1991, pp. 7-4-1 – 7-4-6.
[30] Csanady, G. T.: Turbulent diffusion of heavy particles in the atmosphere, J. atmos. Sci. 20, 201-208 (1963) · Zbl 0113.19604
[31] Sawford, B. L.: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion, Phys. fluids A 3, 1577-1586 (1991)
[32] Zaichik, L. I.; Simonin, O.; Alipchenkov, V. M.: Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence, Phys. fluids 15, 2995-3005 (2003) · Zbl 1186.76598 · doi:10.1063/1.1608014
[33] Oesterlé, B.; Zaichik, L. I.: Time scales for predicting dispersion of arbitrary-density particles in isotropic turbulence, Int. J. Multiphase flow 32, 838-849 (2006) · Zbl 1136.76596 · doi:10.1016/j.ijmultiphaseflow.2006.02.011
[34] Druzhinin, O. A.; Eldhobashi, S.: On the decay rate of isotropic turbulence laden with microparticles, Phys. fluids 11, 602-610 (1999) · Zbl 1147.76378 · doi:10.1063/1.869932
[35] Druzhinin, O. A.: The influence of particle inertia on the two-way coupling and modification of isotropic turbulence by microparticles, Phys. fluids 13, 3738 (2001) · Zbl 1184.76144 · doi:10.1063/1.1415735
[36] Ferrante, A.; Eldhobashi, S.: On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence, Phys. fluids 15, 315-329 (2003) · Zbl 1185.76126 · doi:10.1063/1.1532731
[37] Ahmed, A. M.; Eldhobashi, S.: On the mechanisms of modifying the structure of turbulent homogeneous shear flows by dispersed particles, Phys. fluids 12, 2906-2930 (2000) · Zbl 1184.76020 · doi:10.1063/1.1308509
[38] Rodi, W.: A new algebraic relation for calculating the Reynolds stresses, Zamm 56, T219-T221 (1976) · Zbl 0332.76029
[39] Rotta, J. C.: Statistische theorie nichthomogener turbulenz, Z. phys. 129, 547-572 (1951) · Zbl 0042.43304
[40] Launder, B. E.; Reece, G. J.; Rodi, W.: Progress in the development of a Reynolds stress turbulence closure, J. fluid mech. 68, 537-566 (1975) · Zbl 0301.76030 · doi:10.1017/S0022112075001814
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.