×

Cascaded feedback linearization and its application to stabilization of nonholonomic systems. (English) Zbl 1113.93031

Summary: In this paper, a new cascaded feedback linearization problem is formulated and a set of conditions on the cascaded feedback linearizability are established for a class of two-input affine nonlinear systems. The proposed cascaded feedback linearization method enlarges the classes of nonlinear systems which can be dealt with using the feedback linearization technique. In particular, the proposed design can be applied to address the feedback stabilization problem for a few classes of nonlinear systems which have uncontrollable linearization and do not satisfy the standard feedback linearization conditions. As an illustrative application, the proposed cascade feedback linearization concept is used to solve the feedback stabilization problem of nonholonomic systems within the framework of continuously differentiable state feedback control. Simulation results are provided to illustrate the proposed method.

MSC:

93B18 Linearizations
93C10 Nonlinear systems in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Astolfi, A., Discontinuous control of nonholonomic systems, Systems Control Lett., 27, 37-45 (1996) · Zbl 0877.93107
[2] Bacciotti, A., Local Stabilizability of Nonlinear Control Systems (1992), World Scientific: World Scientific Singapore · Zbl 0757.93061
[3] Brockett, R. W., Asymptotic stability and feedback stabilization, (Brockett, R. W.; Millman, R. S.; Sussmann, H. J., Differential Geometric Control Theory (1983)), 181-191 · Zbl 0528.93051
[4] Charlet, B.; Levine, J.; Marino, R., On dynamic feedback linearization, System Control Lett., 13, 143-151 (1989) · Zbl 0684.93043
[5] Charlet, B.; Levine, J.; Marino, R., Sufficient conditions for dynamic state feedback linearization, SIAM J. Control Optim., 29, 38-57 (1991) · Zbl 0739.93021
[6] Hunt, L. R.; Su, R.; Meyer, G., Global transformations of nonlinear systems, IEEE Trans. Automat. Control, 28, 24-31 (1983) · Zbl 0502.93036
[7] Isidori, A., Nonlinear Control Systems (1995), Springer: Springer Berlin · Zbl 0569.93034
[8] Isidori, A.; Krener, A.; Gori, A. J.; Monaco, S., Nonlinear decoupling via feedback: a differential geometric approach, IEEE Trans. Automat. Control, 26, 331-345 (1981) · Zbl 0481.93037
[9] Jakubczyk, B.; Respondek, W., On linearization of control systems, Bull. Acad. Polonaise, Sci. Ser. Sci. Math., 28, 517-522 (1980) · Zbl 0489.93023
[10] Jiang, Z. P., Robust exponential regulation of nonholonomic systems with uncertainties, Automatica, 36, 189-209 (2000) · Zbl 0952.93057
[11] Khalil, H., Nonlinear Systems (2002), Prentice-Hall: Prentice-Hall Upper Saddle River, NJ
[12] Kolmanovsky, I.; McClamroch, N. H., Developments in nonholonomic control problems, IEEE Contr. Syst. Mag., 15, 20-36 (1995)
[13] Krener, A. J., On the equivalence of control systems and the linearization of nonlinear systems, SIAM J. Control Optim., 11, 670-676 (1973) · Zbl 0243.93009
[14] Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V., Nonlinear and Adaptive Control Design (1995), Wiley: Wiley New York · Zbl 0763.93043
[15] Marino, R., On the largest feedback linearizable subsystem, System Control Lett., 6, 345-351 (1986) · Zbl 0577.93030
[16] Murray, R. M.; Sastry, S. S., Nonholonomic motion planning: steering using sinusoids, IEEE Trans. Automat. Control, 38, 700-716 (1993) · Zbl 0800.93840
[17] Nijmeijer, H.; Van der Schaft, A. J., Nonlinear Dynamical Control Systems (1990), Springer: Springer Berlin · Zbl 0701.93001
[18] Oriolo, G., Wmr control via dynamic feedback linearization: design, implementation and experimental validation, IEEE Trans. Control Systems Technol., 10, 835-852 (2002)
[19] Qu, Z., Robust control of nonlinear uncertain systems under generalized matching conditions, Automatica, 29, 985-998 (1993) · Zbl 0776.93041
[20] Qu, Z., Robust Control of Nonlinear Uncertain Systems (1998), Wiley-Interscience: Wiley-Interscience New York · Zbl 0938.93004
[21] Qu, Z., Global stabilization and convergence of nonlinear systems with uncertain exogenuous dynamics, IEEE Trans. Automat. Control, 49, 1852-1858 (2004) · Zbl 1365.93372
[22] Qu, Z., Robust state observer and control design using command-to-state mapping, Automatica, 41, 1323-1333 (2005) · Zbl 1086.93004
[23] Qu, Z.; Jin, Y., Robust control of nonlinear systems in the presence of unknown exogenous dynamics, IEEE Trans. Automat. Control, 48, 336-343 (2003) · Zbl 1364.93194
[24] Qu, Z.; Wang, J.; Plaisted, C. E.; Hull, R. A., Global-stabilizing near-optimal control design for nonholonomic chained systems, IEEE Trans. Automat. Control, 51, 1440-1456 (2006) · Zbl 1366.93524
[25] Respondek, W., Partial linearization, decompositions and fiber linear systems, (Byrnes, C. I.; Lindquist, A., Theory and Applications of Nonlinear Control (1986), North-Holland: North-Holland Amsterdam, The Netherlands), 137-154
[26] Sluis, W. M., A necessary condition for dynamic feedback linearization, Systems Control Letters, 21, 277-283 (1993) · Zbl 0793.93070
[27] Sun, Z.; Ge, S., Nonregular feedback linearization: a nonsmooth approach, IEEE Trans. Automat. Control, 48, 1772-1776 (2003) · Zbl 1364.93141
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.