Wang, Shaohong; Zhou, Zhan Periodic solutions for a second-order partial difference equation. (English) Zbl 07676680 J. Appl. Math. Comput. 69, No. 1, 731-752 (2023). MSC: 39A14 39A23 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Zhou}, J. Appl. Math. Comput. 69, No. 1, 731--752 (2023; Zbl 07676680) Full Text: DOI OpenURL
Li, Huijuan; Gao, Chenghua; Dimitrov, Nikolay D. Existence of positive solutions of discrete third-order three-point BVP with sign-changing Green’s function. (English) Zbl 1505.39010 Open Math. 20, 1229-1245 (2022). MSC: 39A27 39A12 PDF BibTeX XML Cite \textit{H. Li} et al., Open Math. 20, 1229--1245 (2022; Zbl 1505.39010) Full Text: DOI OpenURL
Khaliq, Abdul; Hassan, Sk. Sarif Analytical solution of a rational difference equation. (English) Zbl 1490.39019 Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 181-202 (2022). MSC: 39A22 39A20 39A23 PDF BibTeX XML Cite \textit{A. Khaliq} and \textit{Sk. S. Hassan}, Adv. Stud.: Euro-Tbil. Math. J. 15, No. 1, 181--202 (2022; Zbl 1490.39019) Full Text: DOI OpenURL
Ayyalappagari, Sreenivasulu; Rao, Bhogapurapu Venkata Appa Stability criteria for nonlinear Volterra integro-dynamic matrix Sylvester systems on measure chains. (English) Zbl 1494.45003 Adv. Difference Equ. 2021, Paper No. 514, 17 p. (2021). MSC: 45D05 45M10 34N05 26E70 PDF BibTeX XML Cite \textit{S. Ayyalappagari} and \textit{B. V. A. Rao}, Adv. Difference Equ. 2021, Paper No. 514, 17 p. (2021; Zbl 1494.45003) Full Text: DOI OpenURL
Ding, Liang; Tian, Rongrong; Wei, Jinlong Periodic solutions for second-order difference equations with quadratic-supquadratic condition. (English) Zbl 1494.39015 Adv. Difference Equ. 2021, Paper No. 406, 11 p. (2021). MSC: 39A23 PDF BibTeX XML Cite \textit{L. Ding} et al., Adv. Difference Equ. 2021, Paper No. 406, 11 p. (2021; Zbl 1494.39015) Full Text: DOI OpenURL
Long, Yuhua Existence of two homoclinic solutions for a nonperiodic difference equation with a perturbation. (English) Zbl 1484.39011 AIMS Math. 6, No. 5, 4786-4802 (2021). MSC: 39A23 PDF BibTeX XML Cite \textit{Y. Long}, AIMS Math. 6, No. 5, 4786--4802 (2021; Zbl 1484.39011) Full Text: DOI OpenURL
Wang, Shaohong; Zhou, Zhan Three solutions for a partial discrete Dirichlet boundary value problem with \(p\)-Laplacian. (English) Zbl 1487.39022 Bound. Value Probl. 2021, Paper No. 39, 17 p. (2021). MSC: 39A27 39A12 39A14 PDF BibTeX XML Cite \textit{S. Wang} and \textit{Z. Zhou}, Bound. Value Probl. 2021, Paper No. 39, 17 p. (2021; Zbl 1487.39022) Full Text: DOI OpenURL
Yalcinkaya, Ibrahim; Atak, Nur; Tollu, Durhasan Turgut On a third-order fuzzy difference equation. (English) Zbl 1484.39012 J. Prime Res. Math. 17, No. 1, 59-69 (2021). MSC: 39A26 39A22 PDF BibTeX XML Cite \textit{I. Yalcinkaya} et al., J. Prime Res. Math. 17, No. 1, 59--69 (2021; Zbl 1484.39012) Full Text: Link OpenURL
Zayed, Elsayed M. E.; Alngar, Mohamed E. M. Dynamics of a higher order nonlinear rational difference equation. (English) Zbl 1483.39004 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 357-367 (2021). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. E. M. Alngar}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 5, 357--367 (2021; Zbl 1483.39004) Full Text: Link OpenURL
Yalcinkaya, Ibrahim; Tollu, D. Turgut; Sahinkaya, A. Furkan On solvability of a system of three difference equations. (English) Zbl 1483.39003 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 4, 263-277 (2021). MSC: 39A20 PDF BibTeX XML Cite \textit{I. Yalcinkaya} et al., Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 4, 263--277 (2021; Zbl 1483.39003) Full Text: Link OpenURL
Oğul, Burak; Şimşek, Dağıstan; Öğünmez, Hasan; Kurbanlı, Abdullah Selçuk Dynamical behavior of rational difference equation \(x_{n+1}=\frac{x_{n-17}}{\pm 1 \pm x_{n-2} x_{n-5} x_{n-8} x_{n-11} x_{n-14} x_{n-17}}\). (English) Zbl 1470.39024 Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 49, 20 p. (2021); correction ibid. 27, No. 3, Paper No. 74, 6 p. (2021). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{B. Oğul} et al., Bol. Soc. Mat. Mex., III. Ser. 27, No. 2, Paper No. 49, 20 p. (2021; Zbl 1470.39024) Full Text: DOI OpenURL
Beiranvand, M.; Ghasemi Kamalvand, M. On computing of integer positive powers for one type of tridiagonal and antitridiagonal matrices of even order. (English) Zbl 1474.15024 J. Linear Topol. Algebra 10, No. 1, 59-69 (2021). MSC: 15A16 15A18 15B05 PDF BibTeX XML Cite \textit{M. Beiranvand} and \textit{M. Ghasemi Kamalvand}, J. Linear Topol. Algebra 10, No. 1, 59--69 (2021; Zbl 1474.15024) Full Text: Link OpenURL
Li, Zizun Some generalized Gronwall-Bellman type difference inequalities and applications. (English) Zbl 1469.39004 J. Math. Inequal. 15, No. 1, 173-200 (2021). MSC: 39A12 26D15 26D10 PDF BibTeX XML Cite \textit{Z. Li}, J. Math. Inequal. 15, No. 1, 173--200 (2021; Zbl 1469.39004) Full Text: DOI OpenURL
Hassan, Sk. Sarif; Mondal, Soma; Mandal, Swagata; Sau, Chumki Asymptotic dynamics of a class of third order rational difference equations. (English) Zbl 1499.39029 Far East J. Dyn. Syst. 32, No. 1, 21-49 (2020). MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{Sk. S. Hassan} et al., Far East J. Dyn. Syst. 32, No. 1, 21--49 (2020; Zbl 1499.39029) Full Text: DOI OpenURL
Jin, Liyun; Luo, Hua Positive solutions of a discrete second-order boundary value problems with fully nonlinear term. (English) Zbl 1486.39022 Adv. Difference Equ. 2020, Paper No. 583, 13 p. (2020). MSC: 39A27 39A12 34B18 PDF BibTeX XML Cite \textit{L. Jin} and \textit{H. Luo}, Adv. Difference Equ. 2020, Paper No. 583, 13 p. (2020; Zbl 1486.39022) Full Text: DOI OpenURL
Benekas, Vasileios; Kashkynbayev, Ardak; Stavroulakis, Ioannis P. A sharp oscillation criterion for a difference equation with constant delay. (English) Zbl 1486.39016 Adv. Difference Equ. 2020, Paper No. 566, 8 p. (2020). MSC: 39A21 PDF BibTeX XML Cite \textit{V. Benekas} et al., Adv. Difference Equ. 2020, Paper No. 566, 8 p. (2020; Zbl 1486.39016) Full Text: DOI OpenURL
Xing, Lihong; Qiu, Donghua; Zheng, Zhaowen Some new integral inequalities of Wendorff type for discontinuous functions with integral jump conditions. (English) Zbl 1503.26081 J. Inequal. Appl. 2020, Paper No. 171, 22 p. (2020). MSC: 26D15 26D10 26A15 26A27 PDF BibTeX XML Cite \textit{L. Xing} et al., J. Inequal. Appl. 2020, Paper No. 171, 22 p. (2020; Zbl 1503.26081) Full Text: DOI OpenURL
Abo-Zeid, Raafat; Kamal, Hossam On the solutions of a third order rational difference equation. (English) Zbl 1480.39005 Thai J. Math. 18, No. 4, 1865-1874 (2020). MSC: 39A20 39A30 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{H. Kamal}, Thai J. Math. 18, No. 4, 1865--1874 (2020; Zbl 1480.39005) Full Text: Link OpenURL
Kara, Merve; Yazlik, Yasin; Tollu, Durhasan Turgut Solvability of a system of higher order nonlinear difference equations. (English) Zbl 1488.39017 Hacet. J. Math. Stat. 49, No. 5, 1566-1593 (2020). MSC: 39A20 39A22 11B39 PDF BibTeX XML Cite \textit{M. Kara} et al., Hacet. J. Math. Stat. 49, No. 5, 1566--1593 (2020; Zbl 1488.39017) Full Text: DOI OpenURL
Jonnalagadda, Jagan Mohan Discrete fractional Lyapunov-type inequalities in nabla sense. (English) Zbl 1454.39019 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 397-419 (2020). MSC: 39A12 39A27 34B27 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 6, 397--419 (2020; Zbl 1454.39019) Full Text: Link OpenURL
Köprübaşi, Turhan; Ünal, Zafer; Bolat, Yaşar Oscillation criteria for higher-order neutral type difference equations. (English) Zbl 1472.39018 Turk. J. Math. 44, No. 3, 729-738 (2020). Reviewer: Pavel Rehak (Brno) MSC: 39A21 39A12 34K40 PDF BibTeX XML Cite \textit{T. Köprübaşi} et al., Turk. J. Math. 44, No. 3, 729--738 (2020; Zbl 1472.39018) Full Text: DOI OpenURL
Alp, Necmettin; Bilişik, Candan Can; Sarıkaya, Mehmet Zeki On \(q\)-Opial type inequality for quantum integral. (English) Zbl 1499.26064 Filomat 33, No. 13, 4175-4184 (2019). MSC: 26D10 PDF BibTeX XML Cite \textit{N. Alp} et al., Filomat 33, No. 13, 4175--4184 (2019; Zbl 1499.26064) Full Text: DOI OpenURL
Jonnalagadda, Jagan Mohan Fractional difference equations of Volterra type. (English) Zbl 1494.39013 Kragujevac J. Math. 43, No. 2, 219-237 (2019). MSC: 39A22 39A30 45D05 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda}, Kragujevac J. Math. 43, No. 2, 219--237 (2019; Zbl 1494.39013) Full Text: Link OpenURL
Cao, Junfei; Samet, Bessem; Zhou, Yong Asymptotically almost periodic mild solutions to a class of Weyl-like fractional difference equations. (English) Zbl 1459.39010 Adv. Difference Equ. 2019, Paper No. 371, 33 p. (2019). MSC: 39A13 39A23 PDF BibTeX XML Cite \textit{J. Cao} et al., Adv. Difference Equ. 2019, Paper No. 371, 33 p. (2019; Zbl 1459.39010) Full Text: DOI OpenURL
Abo-Zeid, R. On a fourth order rational difference equation. (English) Zbl 1434.39008 Tbil. Math. J. 12, No. 4, 71-79 (2019). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Tbil. Math. J. 12, No. 4, 71--79 (2019; Zbl 1434.39008) Full Text: DOI Euclid OpenURL
Khastan, A.; Alijani, Z. On the new solutions to the fuzzy difference equation \(x_{n + 1} = A + \frac{B}{x_n}\). (English) Zbl 1423.39005 Fuzzy Sets Syst. 358, 64-83 (2019). MSC: 39A12 39A10 39A21 PDF BibTeX XML Cite \textit{A. Khastan} and \textit{Z. Alijani}, Fuzzy Sets Syst. 358, 64--83 (2019; Zbl 1423.39005) Full Text: DOI OpenURL
Abo-Zeid, R. Global behavior of a fourth-order difference equation with quadratic term. (English) Zbl 1412.39002 Bol. Soc. Mat. Mex., III. Ser. 25, No. 1, 187-194 (2019). MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Bol. Soc. Mat. Mex., III. Ser. 25, No. 1, 187--194 (2019; Zbl 1412.39002) Full Text: DOI OpenURL
Demenchuk, Aleksandr Konstantinovich Strongly irregular periodic solutions of the first-order linear homogeneous discrete equation. (Russian. English summary) Zbl 07655968 Dokl. Nats. Akad. Nauk Belarusi 62, No. 3, 263-267 (2018). MSC: 39A21 39A12 34C25 PDF BibTeX XML Cite \textit{A. K. Demenchuk}, Dokl. Nats. Akad. Nauk Belarusi 62, No. 3, 263--267 (2018; Zbl 07655968) Full Text: Link OpenURL
Abo-Zeid, R.; Al-Shabi, M. A. Global behavior of a fourth order rational difference equation. (English) Zbl 1447.39007 Thai J. Math. 16, No. 3, 665-674 (2018). MSC: 39A30 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{M. A. Al-Shabi}, Thai J. Math. 16, No. 3, 665--674 (2018; Zbl 1447.39007) Full Text: Link OpenURL
Belokursky, M. S.; Demenchuk, A. K. The condition of the absence of strongly irregular periodic solutions of the system of two linear discrete periodic equations. (Russian. English summary) Zbl 1406.39017 Probl. Fiz. Mat. Tekh. 2018, No. 3(36), 67-69 (2018). MSC: 39A23 PDF BibTeX XML Cite \textit{M. S. Belokursky} and \textit{A. K. Demenchuk}, Probl. Fiz. Mat. Tekh. 2018, No. 3(36), 67--69 (2018; Zbl 1406.39017) Full Text: MNR OpenURL
Jamieson, William T.; Merino, Orlando Local dynamics of planar maps with a non-isolated fixed point exhibiting \(1-1\) resonance. (English) Zbl 1446.37042 Adv. Difference Equ. 2018, Paper No. 142, 22 p. (2018). MSC: 37E30 37C15 37C25 PDF BibTeX XML Cite \textit{W. T. Jamieson} and \textit{O. Merino}, Adv. Difference Equ. 2018, Paper No. 142, 22 p. (2018; Zbl 1446.37042) Full Text: DOI OpenURL
Malešević, Branko; Lutovac, Tatjana; Rašajski, Marija; Mortici, Cristinel Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. (English) Zbl 1445.26015 Adv. Difference Equ. 2018, Paper No. 90, 15 p. (2018). MSC: 26D05 33B10 PDF BibTeX XML Cite \textit{B. Malešević} et al., Adv. Difference Equ. 2018, Paper No. 90, 15 p. (2018; Zbl 1445.26015) Full Text: DOI arXiv OpenURL
Karpuz, Başak Philos’ inequality on time scales and its application in the oscillation theory. (English) Zbl 1406.34108 Math. Inequal. Appl. 21, No. 4, 1029-1046 (2018). Reviewer: Antonín Slavík (Praha) MSC: 34N05 34K11 PDF BibTeX XML Cite \textit{B. Karpuz}, Math. Inequal. Appl. 21, No. 4, 1029--1046 (2018; Zbl 1406.34108) Full Text: DOI arXiv OpenURL
Gümüş, M.; Abo-Zeid, R. On the solutions of a \((2k+2)\)th order difference equation. (English) Zbl 1383.39004 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 25, No. 2, 129-143 (2018). MSC: 39A10 PDF BibTeX XML Cite \textit{M. Gümüş} and \textit{R. Abo-Zeid}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 25, No. 2, 129--143 (2018; Zbl 1383.39004) Full Text: Link OpenURL
Moaaz, Osama Comment on “New method to obtain periodic solutions of period two and three of a rational difference equation”. (English) Zbl 1375.39035 Nonlinear Dyn. 88, No. 2, 1043-1049 (2017). MSC: 39A23 PDF BibTeX XML Cite \textit{O. Moaaz}, Nonlinear Dyn. 88, No. 2, 1043--1049 (2017; Zbl 1375.39035) Full Text: DOI OpenURL
Chen, Tianlan; Ma, Ruyun Existence of positive solutions for difference systems coming from a model for burglary. (English) Zbl 1424.39005 Turk. J. Math. 40, No. 5, 1049-1057 (2016). MSC: 39A10 39A60 37C25 47H11 PDF BibTeX XML Cite \textit{T. Chen} and \textit{R. Ma}, Turk. J. Math. 40, No. 5, 1049--1057 (2016; Zbl 1424.39005) Full Text: DOI OpenURL
El-Dessoky, Mohamed M. Solution for rational systems of difference equations of order three. (English) Zbl 1360.39008 Mathematics 4, No. 3, Paper No. 53, 12 p. (2016). MSC: 39A20 39A23 39A30 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, Mathematics 4, No. 3, Paper No. 53, 12 p. (2016; Zbl 1360.39008) Full Text: DOI OpenURL
Chen, Peng; He, Xiaofei Existence and multiplicity of homoclinic solutions for second-order nonlinear difference equations with Jacobi operators. (English) Zbl 1370.39004 Math. Methods Appl. Sci. 39, No. 18, 5705-5719 (2016). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A10 39A12 34B24 34C37 PDF BibTeX XML Cite \textit{P. Chen} and \textit{X. He}, Math. Methods Appl. Sci. 39, No. 18, 5705--5719 (2016; Zbl 1370.39004) Full Text: DOI OpenURL
Psarros, N.; Papaschinopoulos, G.; Schinas, C. J. Semistability of two systems of difference equations using centre manifold theory. (English) Zbl 1364.39017 Math. Methods Appl. Sci. 39, No. 18, 5216-5222 (2016). Reviewer: Miloš Čanak (Beograd) MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{N. Psarros} et al., Math. Methods Appl. Sci. 39, No. 18, 5216--5222 (2016; Zbl 1364.39017) Full Text: DOI OpenURL
Choi, Joon-Young; Krstic, Miroslav Compensation of time-varying input delay for discrete-time nonlinear systems. (English) Zbl 1342.93061 Int. J. Robust Nonlinear Control 26, No. 8, 1755-1776 (2016). MSC: 93B52 93C55 93C10 93D99 PDF BibTeX XML Cite \textit{J.-Y. Choi} and \textit{M. Krstic}, Int. J. Robust Nonlinear Control 26, No. 8, 1755--1776 (2016; Zbl 1342.93061) Full Text: DOI OpenURL
Liu, Xiaohong; Zhang, Lihong; Agarwal, Praveen; Wang, Guotao On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications. (English) Zbl 1334.26052 Indag. Math., New Ser. 27, No. 1, 1-10 (2016). Reviewer: Choonkil Park (Seoul) MSC: 26D15 45Gxx 26D10 PDF BibTeX XML Cite \textit{X. Liu} et al., Indag. Math., New Ser. 27, No. 1, 1--10 (2016; Zbl 1334.26052) Full Text: DOI OpenURL
Bezubik, Agata; Migda, Małgorzata; Nockowska-Rosiak, Magdalena; Schmeidel, Ewa Trichotomy of nonoscillatory solutions to second-order neutral difference equation with quasi-difference. (English) Zbl 1422.39005 Adv. Difference Equ. 2015, Paper No. 192, 14 p. (2015). MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{A. Bezubik} et al., Adv. Difference Equ. 2015, Paper No. 192, 14 p. (2015; Zbl 1422.39005) Full Text: DOI OpenURL
Wu, Shuhui; Calay, Pargat Singh; Hou, Zhanyuan Oscillation criteria for a class of higher odd order neutral difference equations with continuous variable. (English) Zbl 1422.39038 Adv. Difference Equ. 2015, Paper No. 166, 17 p. (2015). MSC: 39A21 34K11 34K40 PDF BibTeX XML Cite \textit{S. Wu} et al., Adv. Difference Equ. 2015, Paper No. 166, 17 p. (2015; Zbl 1422.39038) Full Text: DOI OpenURL
Wu, Guo-Cheng; Baleanu, Dumitru; Zeng, Sheng-Da; Deng, Zhen-Guo Discrete fractional diffusion equation. (English) Zbl 1345.65067 Nonlinear Dyn. 80, No. 1-2, 281-286 (2015). MSC: 65Q10 76R50 35R11 39A14 26A33 37M05 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., Nonlinear Dyn. 80, No. 1--2, 281--286 (2015; Zbl 1345.65067) Full Text: DOI OpenURL
Alzabut, Jehad; Bolat, Yasar Oscillation criteria for nonlinear higher-order forced functional difference equations. (English) Zbl 1326.39008 Vietnam J. Math. 43, No. 3, 583-594 (2015). Reviewer: Qi Wang (Hefei) MSC: 39A21 39A10 PDF BibTeX XML Cite \textit{J. Alzabut} and \textit{Y. Bolat}, Vietnam J. Math. 43, No. 3, 583--594 (2015; Zbl 1326.39008) Full Text: DOI OpenURL
Elsayed, E. M. New method to obtain periodic solutions of period two and three of a rational difference equation. (English) Zbl 1331.39003 Nonlinear Dyn. 79, No. 1, 241-250 (2015). MSC: 39A10 39A23 39A30 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Nonlinear Dyn. 79, No. 1, 241--250 (2015; Zbl 1331.39003) Full Text: DOI OpenURL
Kouachi, S. Explicit eigenvalues of some perturbed heptadiagonal matrices via recurrent sequences. (English) Zbl 1335.15010 Lobachevskii J. Math. 36, No. 1, 28-37 (2015). Reviewer: C. M. da Fonseca (Safat) MSC: 15A18 15B05 PDF BibTeX XML Cite \textit{S. Kouachi}, Lobachevskii J. Math. 36, No. 1, 28--37 (2015; Zbl 1335.15010) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Shi, Haiping; Deng, Xiaoqing Existence of periodic solutions for a \(2n\)th-order difference equation involving \(p\)-Laplacian. (English) Zbl 1328.39024 Bull. Malays. Math. Sci. Soc. (2) 38, No. 3, 1107-1125 (2015). MSC: 39A23 PDF BibTeX XML Cite \textit{X. Liu} et al., Bull. Malays. Math. Sci. Soc. (2) 38, No. 3, 1107--1125 (2015; Zbl 1328.39024) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Shi, Haiping; Deng, Xiaoqing Periodic solutions for fourth-order nonlinear functional difference equations. (English) Zbl 1317.39021 Math. Methods Appl. Sci. 38, No. 1, 1-10 (2015). MSC: 39A23 PDF BibTeX XML Cite \textit{X. Liu} et al., Math. Methods Appl. Sci. 38, No. 1, 1--10 (2015; Zbl 1317.39021) Full Text: DOI OpenURL
Shi, Haiping Periodic and subharmonic solutions for second-order nonlinear difference equations. (English) Zbl 1323.39013 J. Appl. Math. Comput. 48, No. 1-2, 157-171 (2015). Reviewer: Stefan Balint (Timişoara) MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{H. Shi}, J. Appl. Math. Comput. 48, No. 1--2, 157--171 (2015; Zbl 1323.39013) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Shi, Haiping Existence of periodic solutions for a class of nonlinear difference equations. (English) Zbl 1317.39020 Qual. Theory Dyn. Syst. 14, No. 1, 51-69 (2015). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{X. Liu} et al., Qual. Theory Dyn. Syst. 14, No. 1, 51--69 (2015; Zbl 1317.39020) Full Text: DOI OpenURL
Elsayed, E. M.; Ibrahim, T. F. Solutions and periodicity of a rational recursive sequences of order five. (English) Zbl 1308.39002 Bull. Malays. Math. Sci. Soc. (2) 38, No. 1, 95-112 (2015). MSC: 39A10 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{T. F. Ibrahim}, Bull. Malays. Math. Sci. Soc. (2) 38, No. 1, 95--112 (2015; Zbl 1308.39002) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Shi, Haiping Homoclinic orbits of second order nonlinear functional difference equations with Jacobi operators. (English) Zbl 1304.39005 Indag. Math., New Ser. 26, No. 1, 75-87 (2015). MSC: 39A10 39A12 37C29 PDF BibTeX XML Cite \textit{X. Liu} et al., Indag. Math., New Ser. 26, No. 1, 75--87 (2015; Zbl 1304.39005) Full Text: DOI OpenURL
Xia, Zhinan Discrete weighted pseudo asymptotic periodicity of second order difference equations. (English) Zbl 1419.39033 Discrete Dyn. Nat. Soc. 2014, Article ID 949487, 8 p. (2014). MSC: 39A23 PDF BibTeX XML Cite \textit{Z. Xia}, Discrete Dyn. Nat. Soc. 2014, Article ID 949487, 8 p. (2014; Zbl 1419.39033) Full Text: DOI OpenURL
Long, Yuhua; Shi, Haiping Multiple solutions for the discrete \(p\)-Laplacian boundary value problems. (English) Zbl 1419.39017 Discrete Dyn. Nat. Soc. 2014, Article ID 213702, 6 p. (2014). MSC: 39A13 PDF BibTeX XML Cite \textit{Y. Long} and \textit{H. Shi}, Discrete Dyn. Nat. Soc. 2014, Article ID 213702, 6 p. (2014; Zbl 1419.39017) Full Text: DOI OpenURL
Stavroulakis, I. P. Oscillation criteria for delay and difference equations with non-monotone arguments. (English) Zbl 1354.34120 Appl. Math. Comput. 226, 661-672 (2014). MSC: 34K11 39A21 PDF BibTeX XML Cite \textit{I. P. Stavroulakis}, Appl. Math. Comput. 226, 661--672 (2014; Zbl 1354.34120) Full Text: DOI OpenURL
Lin, Genghong; Zhou, Zhan Periodic and subharmonic solutions for a \(2n\)th-order difference equation containing both advance and retardation with \( \phi\)-Laplacian. (English) Zbl 1347.39016 Adv. Difference Equ. 2014, Paper No. 74, 14 p. (2014). MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{G. Lin} and \textit{Z. Zhou}, Adv. Difference Equ. 2014, Paper No. 74, 14 p. (2014; Zbl 1347.39016) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Shi, Haiping; Deng, Xiaoqing Periodic and subharmonic solutions for fourth-order nonlinear difference equations. (English) Zbl 1334.39018 Appl. Math. Comput. 236, 613-620 (2014). MSC: 39A12 PDF BibTeX XML Cite \textit{X. Liu} et al., Appl. Math. Comput. 236, 613--620 (2014; Zbl 1334.39018) Full Text: DOI OpenURL
Jankowski, Robert; Schmeidel, Ewa; Zonenberg, Joanna Oscillatory properties of solutions of the fourth order difference equations with quasidifferences. (English) Zbl 1330.39013 Opusc. Math. 34, No. 4, 789-797 (2014). MSC: 39A21 39A10 34K40 39A12 PDF BibTeX XML Cite \textit{R. Jankowski} et al., Opusc. Math. 34, No. 4, 789--797 (2014; Zbl 1330.39013) Full Text: DOI arXiv OpenURL
Liu, Xia; Zhang, Y.; Shi, H. Existence and nonexistence results for a \(2n\)-th order \(p\)-Laplacian discrete Dirichlet boundary value problem. (English) Zbl 1339.39007 J. Contemp. Math. Anal., Armen. Acad. Sci. 49, No. 6, 287-295 (2014) and Izv. Nats. Akad. Nauk Armen., Mat. 49, No. 6, 133–143 (2014). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A12 39A21 39A10 35J92 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 49, No. 6, 287--295 (2014; Zbl 1339.39007) Full Text: DOI OpenURL
Liu, Xia; Zhang, Y.; Shi, H. Periodic and subharmonic solutions for \(2n\)th-order \(p\)-Laplacian difference equations. (English) Zbl 1320.39016 J. Contemp. Math. Anal., Armen. Acad. Sci. 49, No. 5, 223-231 (2014) and Izv. Nats. Akad. Nauk Armen., Mat. 49, No. 5, 40-52 (2014). Reviewer: Hui-Sheng Ding (Jiangxi) MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Contemp. Math. Anal., Armen. Acad. Sci. 49, No. 5, 223--231 (2014; Zbl 1320.39016) Full Text: DOI OpenURL
Galewski, Marek; Wieteska, Renata Multiple periodic solutions to a discrete \(p^{(k)}\)-Laplacian problem. (English) Zbl 1304.39018 Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2535-2547 (2014). MSC: 39A23 39A12 35J92 PDF BibTeX XML Cite \textit{M. Galewski} and \textit{R. Wieteska}, Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2535--2547 (2014; Zbl 1304.39018) Full Text: DOI arXiv OpenURL
Shi, Haiping; Liu, Xia; Zhang, Yuanbiao; Deng, Xiaoqing Existence of periodic solutions of fourth-order nonlinear difference equations. (English) Zbl 1334.39041 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 108, No. 2, 811-825 (2014). Reviewer: Sui Sun Cheng (Hsinchu) MSC: 39A23 39A10 PDF BibTeX XML Cite \textit{H. Shi} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 108, No. 2, 811--825 (2014; Zbl 1334.39041) Full Text: DOI OpenURL
Mohan, J. Jagan; Deekshitulu, G. V. S. R. Solutions of nabla fractional difference equations using \(N\)-transforms. (English) Zbl 1383.39005 Commun. Math. Stat. 2, No. 1, 1-16 (2014). MSC: 39A10 PDF BibTeX XML Cite \textit{J. J. Mohan} and \textit{G. V. S. R. Deekshitulu}, Commun. Math. Stat. 2, No. 1, 1--16 (2014; Zbl 1383.39005) Full Text: DOI OpenURL
Jonnalagadda, Jaganmohan Solutions of perturbed linear nabla fractional difference equations. (English) Zbl 1301.39001 Differ. Equ. Dyn. Syst. 22, No. 3, 281-292 (2014). Reviewer: Miloš Čanak (Beograd) MSC: 39A10 26A33 39A22 PDF BibTeX XML Cite \textit{J. Jonnalagadda}, Differ. Equ. Dyn. Syst. 22, No. 3, 281--292 (2014; Zbl 1301.39001) Full Text: DOI OpenURL
Shin, Jong Son; Naito, Toshiki Representations of solutions, translation formulae and asymptotic behavior in discrete linear systems and periodic continuous linear systems. (English) Zbl 1287.93051 Hiroshima Math. J. 44, No. 1, 75-126 (2014). MSC: 93C55 93C05 39A10 39A23 34A30 34C11 34C25 15A15 15A18 34C27 45M15 PDF BibTeX XML Cite \textit{J. S. Shin} and \textit{T. Naito}, Hiroshima Math. J. 44, No. 1, 75--126 (2014; Zbl 1287.93051) Full Text: Euclid OpenURL
Abo-Zeid, R.; Cinar, Cengiz Global behavior of the difference equation \(x_{n+1}=\frac{Ax_{n-1}}{B-Cx_nx_{n-2}}\). (English) Zbl 1413.39027 Bol. Soc. Parana. Mat. (3) 31, No. 1, 43-49 (2013). MSC: 39A30 39A10 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{C. Cinar}, Bol. Soc. Parana. Mat. (3) 31, No. 1, 43--49 (2013; Zbl 1413.39027) Full Text: Link OpenURL
Elsayed, Elsayed M.; El-Metwally, Hamdy On the solutions of some nonlinear systems of difference equations. (English) Zbl 1390.39010 Adv. Difference Equ. 2013, Paper No. 161, 14 p. (2013). MSC: 39A10 39A23 PDF BibTeX XML Cite \textit{E. M. Elsayed} and \textit{H. El-Metwally}, Adv. Difference Equ. 2013, Paper No. 161, 14 p. (2013; Zbl 1390.39010) Full Text: DOI OpenURL
Tollu, Durhasan T.; Yazlik, Yasin; Taskara, Necati On the solutions of two special types of Riccati difference equation via Fibonacci numbers. (English) Zbl 1390.39020 Adv. Difference Equ. 2013, Paper No. 174, 7 p. (2013). MSC: 39A10 39A13 11B39 PDF BibTeX XML Cite \textit{D. T. Tollu} et al., Adv. Difference Equ. 2013, Paper No. 174, 7 p. (2013; Zbl 1390.39020) Full Text: DOI OpenURL
Din, Qamar Dynamics of a discrete Lotka-Volterra model. (English) Zbl 1380.39004 Adv. Difference Equ. 2013, Paper No. 95, 13 p. (2013). MSC: 39A10 39A30 PDF BibTeX XML Cite \textit{Q. Din}, Adv. Difference Equ. 2013, Paper No. 95, 13 p. (2013; Zbl 1380.39004) Full Text: DOI OpenURL
Lizama, Carlos; Mesquita, Jaqueline G. Almost automorphic solutions of non-autonomous difference equations. (English) Zbl 1306.39009 J. Math. Anal. Appl. 407, No. 2, 339-349 (2013). MSC: 39A30 39A12 PDF BibTeX XML Cite \textit{C. Lizama} and \textit{J. G. Mesquita}, J. Math. Anal. Appl. 407, No. 2, 339--349 (2013; Zbl 1306.39009) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Shi, Haiping Existence theorems of periodic solutions for fourth-order nonlinear functional difference equations. (English) Zbl 1310.39008 J. Appl. Math. Comput. 42, No. 1-2, 51-67 (2013). Reviewer: Hui-Sheng Ding (Jiangxi) MSC: 39A23 39A12 39A10 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Appl. Math. Comput. 42, No. 1--2, 51--67 (2013; Zbl 1310.39008) Full Text: DOI OpenURL
Ren, Zhiguo; Zhang, Yuanbiao; Zheng, Bo; Shi, Haiping Homoclinic orbits of nonlinear functional difference equations with Jacobi operators. (English) Zbl 1302.37017 Rocky Mt. J. Math. 43, No. 6, 1991-2008 (2013). Reviewer: Anthony Uyi Afuwape (Medellin) MSC: 37C29 37J45 39A10 47J30 PDF BibTeX XML Cite \textit{Z. Ren} et al., Rocky Mt. J. Math. 43, No. 6, 1991--2008 (2013; Zbl 1302.37017) Full Text: DOI Euclid OpenURL
Deng, Xiaoqing; Liu, Xia; Zhang, Yuanbiao; Shi, Haiping Periodic and subharmonic solutions for a \(2n\)th-order difference equation involving \(p\)-Laplacian. (English) Zbl 1284.39016 Indag. Math., New Ser. 24, No. 3, 613-625 (2013). Reviewer: Fengqin Zhang (Yuncheng) MSC: 39A23 39A12 39A10 35J92 PDF BibTeX XML Cite \textit{X. Deng} et al., Indag. Math., New Ser. 24, No. 3, 613--625 (2013; Zbl 1284.39016) Full Text: DOI OpenURL
Muhammadhaji, Ahmadjan; Teng, Zhidong; Nie, Linfei Permanence in nonautonomous discrete Lotka-Volterra \(n\)-species competitive systems with pure-delays and feedback controls. (English) Zbl 1310.92048 Int. J. Math. 24, No. 7, Article ID 1350053, 17 p. (2013). MSC: 92D25 39B22 37N25 37B55 PDF BibTeX XML Cite \textit{A. Muhammadhaji} et al., Int. J. Math. 24, No. 7, Article ID 1350053, 17 p. (2013; Zbl 1310.92048) Full Text: DOI OpenURL
Petropoulou, Eugenia N.; Tzirtzilakis, Efstratios E. On the logistic equation in the complex plane. (English) Zbl 1281.39011 Numer. Funct. Anal. Optim. 34, No. 7, 770-790 (2013). Reviewer: Ioannis P. Stavroulakis (Ioannina) MSC: 39A45 34A12 34A25 34M35 65Q10 PDF BibTeX XML Cite \textit{E. N. Petropoulou} and \textit{E. E. Tzirtzilakis}, Numer. Funct. Anal. Optim. 34, No. 7, 770--790 (2013; Zbl 1281.39011) Full Text: DOI OpenURL
Liu, Bin; Xu, Chengjie; Liu, Dongnan Input-to-state-stability-type comparison principles and input-to-state stability for discrete-time dynamical networks with time delays. (English) Zbl 1271.93133 Int. J. Robust Nonlinear Control 23, No. 4, 450-472 (2013). MSC: 93D25 93C55 PDF BibTeX XML Cite \textit{B. Liu} et al., Int. J. Robust Nonlinear Control 23, No. 4, 450--472 (2013; Zbl 1271.93133) Full Text: DOI OpenURL
El-Metwally, H.; Elsayed, E. M.; Elabbasy, E. M. On the solutions of difference equations of order four. (English) Zbl 1355.39003 Rocky Mt. J. Math. 43, No. 3, 877-894 (2013). MSC: 39A10 39A22 PDF BibTeX XML Cite \textit{H. El-Metwally} et al., Rocky Mt. J. Math. 43, No. 3, 877--894 (2013; Zbl 1355.39003) Full Text: DOI Euclid OpenURL
El-Dessoky, M. M. Qualitative behavior of rational difference equation of big order. (English) Zbl 1264.39013 Discrete Dyn. Nat. Soc. 2013, Article ID 495838, 6 p. (2013). MSC: 39A22 PDF BibTeX XML Cite \textit{M. M. El-Dessoky}, Discrete Dyn. Nat. Soc. 2013, Article ID 495838, 6 p. (2013; Zbl 1264.39013) Full Text: DOI OpenURL
Elsayed, E. M. Solution of a rational recursive sequences of order three. (English) Zbl 1263.39003 Funct. Approximatio, Comment. Math. 48, No. 1, 7-17 (2013). MSC: 39A10 PDF BibTeX XML Cite \textit{E. M. Elsayed}, Funct. Approximatio, Comment. Math. 48, No. 1, 7--17 (2013; Zbl 1263.39003) Full Text: DOI Euclid OpenURL
Deekshitulu, G. V. S. R.; Mohan, J. Jagan Some new fractional difference inequalities. (English) Zbl 1494.26040 Balasubramaniam, P. (ed.) et al., Mathematical modelling and scientific computation. Proceedings of the 2nd international conference, ICMMSC 2012, Gandhigram, Tamil Nadu, India, March 16–18, 2012. Berlin: Springer. Commun. Comput. Inf. Sci. 283, 403-412 (2012). MSC: 26D15 26A33 39A10 PDF BibTeX XML Cite \textit{G. V. S. R. Deekshitulu} and \textit{J. J. Mohan}, Commun. Comput. Inf. Sci. 283, 403--412 (2012; Zbl 1494.26040) Full Text: DOI OpenURL
Li, Wenjin; Fei, Yupeng; Shan, Biaoan; Pang, Yanni Positive solutions of a singular semipositone boundary value problems for fourth-order coupled difference equations. (English) Zbl 1388.39005 Adv. Difference Equ. 2012, Paper No. 97, 17 p. (2012). MSC: 39A14 34B15 PDF BibTeX XML Cite \textit{W. Li} et al., Adv. Difference Equ. 2012, Paper No. 97, 17 p. (2012; Zbl 1388.39005) Full Text: DOI OpenURL
Gao, Yali; Sun, Yuangong; Zha, Bin; Liu, Hongshuang Forced oscillation of higher-order nonlinear neutral difference equations with positive and negative coefficients. (English) Zbl 1346.39002 Adv. Difference Equ. 2012, Paper No. 110, 12 p. (2012). MSC: 39A10 PDF BibTeX XML Cite \textit{Y. Gao} et al., Adv. Difference Equ. 2012, Paper No. 110, 12 p. (2012; Zbl 1346.39002) Full Text: DOI OpenURL
Deekshitulu, Gunturu Venkata Sita Rama; Mohan, Jonnalagadda Jagan Some new fractional difference inequalities of Gronwall-Bellman type. (English) Zbl 1277.39003 Math. Sci., Springer 6, Paper No. 69, 9 p. (2012). MSC: 39A10 39A99 PDF BibTeX XML Cite \textit{G. V. S. R. Deekshitulu} and \textit{J. J. Mohan}, Math. Sci., Springer 6, Paper No. 69, 9 p. (2012; Zbl 1277.39003) Full Text: DOI OpenURL
Wang, Yuan-Ming; Wu, Wen-Jia; Scalia, Massimo Numerov’s method for a class of nonlinear multipoint boundary value problems. (English) Zbl 1264.65115 Math. Probl. Eng. 2012, Article ID 316852, 29 p. (2012). MSC: 65L10 65L12 34B10 PDF BibTeX XML Cite \textit{Y.-M. Wang} et al., Math. Probl. Eng. 2012, Article ID 316852, 29 p. (2012; Zbl 1264.65115) Full Text: DOI OpenURL
Yuhua, Long Homoclinic orbits for a class of noncoercive discrete Hamiltonian systems. (English) Zbl 1283.37038 J. Appl. Math. 2012, Article ID 720139, 21 p. (2012). MSC: 37C29 37J45 PDF BibTeX XML Cite \textit{L. Yuhua}, J. Appl. Math. 2012, Article ID 720139, 21 p. (2012; Zbl 1283.37038) Full Text: DOI OpenURL
Foondun, Mohammud; Khoshnevisan, Davar An asymptotic theory for randomly forced discrete nonlinear heat equations. (English) Zbl 1260.60119 Bernoulli 18, No. 3, 1042-1060 (2012). Reviewer: Stanisław Wedrychowicz (Rzeszów) MSC: 60H15 PDF BibTeX XML Cite \textit{M. Foondun} and \textit{D. Khoshnevisan}, Bernoulli 18, No. 3, 1042--1060 (2012; Zbl 1260.60119) Full Text: DOI arXiv Euclid OpenURL
El-Metwally, Hamdy; Elsayed, E. M. Qualitative study of solutions of some difference equations. (English) Zbl 1246.39007 Abstr. Appl. Anal. 2012, Article ID 248291, 16 p. (2012). MSC: 39A20 39A22 39A23 39A30 65Q10 PDF BibTeX XML Cite \textit{H. El-Metwally} and \textit{E. M. Elsayed}, Abstr. Appl. Anal. 2012, Article ID 248291, 16 p. (2012; Zbl 1246.39007) Full Text: DOI OpenURL
Camouzis, E.; Drymonis, E.; Ladas, G.; Tikjha, W. Patterns of boundedness of the rational system \(x _{n+1} = \alpha _{1} / (A _{1} + B _{1} x _{ n } + C _{1} y _{ n })\) and \(y _{n+1} = (\alpha _{2} + \beta _{2} x _{ n } + \gamma _{2} y _{ n }) / (A _{2} + B _{2} x _{ n } + C _{2} y _{ n })\). (English) Zbl 1242.39022 J. Difference Equ. Appl. 18, No. 1, 89-110 (2012). Reviewer: Yuming Chen (Waterloo) MSC: 39A22 39A20 PDF BibTeX XML Cite \textit{E. Camouzis} et al., J. Difference Equ. Appl. 18, No. 1, 89--110 (2012; Zbl 1242.39022) Full Text: DOI OpenURL
Tripathy, A. K.; Panigrahi, S. On the oscillatory behaviour of a class of nonlinear delay difference equations of second order. (English) Zbl 1308.39013 Indian J. Pure Appl. Math. 42, No. 1, 27-40 (2011). MSC: 39A21 39A10 39A12 34K40 PDF BibTeX XML Cite \textit{A. K. Tripathy} and \textit{S. Panigrahi}, Indian J. Pure Appl. Math. 42, No. 1, 27--40 (2011; Zbl 1308.39013) Full Text: DOI OpenURL
Zayed, E. M. E.; El-Moneam, M. A. On the global attractivity of two nonlinear difference equations. (English. Russian original) Zbl 1290.37007 J. Math. Sci., New York 177, No. 3, 487-499 (2011); translation from Sovrem. Mat. Prilozh. 70 (2011). MSC: 37B25 PDF BibTeX XML Cite \textit{E. M. E. Zayed} and \textit{M. A. El-Moneam}, J. Math. Sci., New York 177, No. 3, 487--499 (2011; Zbl 1290.37007); translation from Sovrem. Mat. Prilozh. 70 (2011) Full Text: DOI OpenURL
Yuan, Chengjun; Gai, Gongqi; Li, Yunhui Positive solutions of boundary value problem for singular positone and semi-positone third-order difference equations. (English) Zbl 1273.34028 Adv. Difference Equ. 2011, Paper No. 38, 12 p. (2011). MSC: 34B15 39A10 PDF BibTeX XML Cite \textit{C. Yuan} et al., Adv. Difference Equ. 2011, Paper No. 38, 12 p. (2011; Zbl 1273.34028) Full Text: DOI OpenURL
Elabbasy, Elmetwally M.; El-Metwally, Hamdy A.; Elsayed, Elsayed M. Global behavior of the solutions of some difference equations. (English) Zbl 1271.39008 Adv. Difference Equ. 2011, Paper No. 28, 16 p. (2011). MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{E. M. Elabbasy} et al., Adv. Difference Equ. 2011, Paper No. 28, 16 p. (2011; Zbl 1271.39008) Full Text: DOI OpenURL
Liu, Xia; Zhang, Yuanbiao; Zheng, Bo; Shi, Haiping Periodic and subharmonic solutions for second order \(p\)-Laplacian difference equations. (English) Zbl 1258.39006 Proc. Indian Acad. Sci., Math. Sci. 121, No. 4, 457-468 (2011). MSC: 39A23 39A10 39A12 35J92 PDF BibTeX XML Cite \textit{X. Liu} et al., Proc. Indian Acad. Sci., Math. Sci. 121, No. 4, 457--468 (2011; Zbl 1258.39006) Full Text: DOI OpenURL
Liu, X.; Shi, H. P.; Zhang, Y. B. Existence of periodic solutions of second order nonlinear \(p\)-Laplacian difference equations. (English) Zbl 1249.39019 Acta Math. Hung. 133, No. 1-2, 148-165 (2011). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A23 39A12 35J92 35B38 39A10 PDF BibTeX XML Cite \textit{X. Liu} et al., Acta Math. Hung. 133, No. 1--2, 148--165 (2011; Zbl 1249.39019) Full Text: DOI OpenURL
Adıvar, Murat; Bohner, Elvan Akın Halanay type inequalities on time scales with applications. (English) Zbl 1271.34091 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 18, 7519-7531 (2011). MSC: 34N05 34A40 34D20 PDF BibTeX XML Cite \textit{M. Adıvar} and \textit{E. A. Bohner}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74, No. 18, 7519--7531 (2011; Zbl 1271.34091) Full Text: DOI arXiv OpenURL
Yuhua, Long Multiplicity results for periodic solutions with prescribed minimal periods to discrete Hamiltonian systems. (English) Zbl 1298.70028 J. Difference Equ. Appl. 17, No. 10, 1499-1518 (2011). Reviewer: Fengqin Zhang (Yuncheng) MSC: 70H05 39A12 39A23 PDF BibTeX XML Cite \textit{L. Yuhua}, J. Difference Equ. Appl. 17, No. 10, 1499--1518 (2011; Zbl 1298.70028) Full Text: DOI OpenURL
Berg, Lothar; Stević, Stevo On the asymptotics of some systems of difference equations. (English) Zbl 1233.39001 J. Difference Equ. Appl. 17, No. 9, 1291-1301 (2011). Reviewer: Peter Zabreiko (Minsk) MSC: 39A10 41A60 PDF BibTeX XML Cite \textit{L. Berg} and \textit{S. Stević}, J. Difference Equ. Appl. 17, No. 9, 1291--1301 (2011; Zbl 1233.39001) Full Text: DOI OpenURL
Wei, Gengping Asymptotic behavior results for nonlinear neutral delay difference equations. (English) Zbl 1260.39022 Appl. Math. Comput. 217, No. 17, 7184-7190 (2011). Reviewer: N. C. Apreutesei (Iaşi) MSC: 39A22 39A10 39A12 34K40 PDF BibTeX XML Cite \textit{G. Wei}, Appl. Math. Comput. 217, No. 17, 7184--7190 (2011; Zbl 1260.39022) Full Text: DOI OpenURL
Liao, Maoxin; Tang, Xianhua; Xu, Changjin On the rational difference equation \(x_{n}=1+\frac{(1-x_{n-k})(1-x_{n-l})(1-x_{n-m})}{x_{n-k}+x_{n-l}+x_{n-m}}\). (English) Zbl 1213.39006 J. Appl. Math. Comput. 35, No. 1-2, 63-71 (2011). Reviewer: Lothar Berg (Rostock) MSC: 39A10 40A05 PDF BibTeX XML Cite \textit{M. Liao} et al., J. Appl. Math. Comput. 35, No. 1--2, 63--71 (2011; Zbl 1213.39006) Full Text: DOI OpenURL