Resonant-superlinear elliptic problems at high-order eigenvalues. (English) Zbl 1466.35217

Summary: This work establishes existence of solution for resonant-superlinear elliptic problems using an appropriate Linking Theorem. The nonlinearity behaves as an asymptotic linear function at \(-\infty\) (resonant or not) and has a superlinear growth at \(+\infty\), with the eventual resonance phenomena occurring in a high order eigenvalue for the associated linear problem. Our main theorems are stated without the well-known Ambrosetti-Rabinowitz condition.


35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J25 Boundary value problems for second-order elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35J20 Variational methods for second-order elliptic equations
Full Text: DOI


[1] Ambrosetti, A.; Mancini, G., Existence and multiplicity results for nonlinear elliptic problems with linear part at resonance. The case of the simple eigenvalue, J. Differ. Equ., 28, 220-245 (1978) · Zbl 0393.35032 · doi:10.1016/0022-0396(78)90068-2
[2] Arcoya, D.; Villegas, S., Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at \(- \infty\) and superlinear at \(+ \infty \), Math. Z., 219, 499-513 (1995) · Zbl 0834.35048 · doi:10.1007/BF02572378
[3] Bartolo, P.; Benci, V.; Fortunato, D., Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal., 7, 981-1012 (1983) · Zbl 0522.58012 · doi:10.1016/0362-546X(83)90115-3
[4] Bartsch, T.; Li, S., Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28, 419-441 (1997) · Zbl 0872.58018 · doi:10.1016/0362-546X(95)00167-T
[5] Bartsch, T.; Chang, KC; Wang, ZQ, On the Morse indices of sign changing solutions of nonlinear elliptic problems, Math. Z., 233, 655-677 (2000) · Zbl 0946.35023 · doi:10.1007/s002090050492
[6] Calanchi, M., Ruf, B.: Elliptic equations with one-sided critical growth. Electron. J. Differ. Equ. 1-21, (2002) · Zbl 1022.35009
[7] Costa, DG; Magalhães, CA, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23, 1401-1412 (1994) · Zbl 0820.35059 · doi:10.1016/0362-546X(94)90135-X
[8] Cuesta, M.; de Figueiredo, DG; Srikanth, PN, On a resonant-superlinear elliptic problem, Calc. Var. Partial Differ. Equ., 17, 221-233 (2003) · Zbl 1257.35088 · doi:10.1007/s00526-002-0167-8
[9] de Figueiredo, D.G.: Positive solutions of semilinear elliptic problems, in: Differential Equations, São Paulo, in: Lecture Notes in Math., 957, Springer, Berlin-New York, pp. 34-87 (1982) · Zbl 0506.35038
[10] de Figueiredo, DG; Yang, J., Critical superlinear Ambrosetti-Prodi problems, Top. Methods Nonlinear Anal., 14, 59-80 (1999) · Zbl 0958.35055 · doi:10.12775/TMNA.1999.022
[11] da Silva, ED; Ribeiro, B., Resonant-superlinear elliptic problems using variational methods, Adv. Nonlinear Stud., 15, 157-169 (2015) · Zbl 1312.35057 · doi:10.1515/ans-2015-0108
[12] Masiello, A., Pisani, L.: Asymptotically linear elliptic problems at resonance. Annali di Matematica Pura ed Applicata (IV), CLXXI 1-13 (1996) · Zbl 0871.35042
[13] Kannan, R.; Ortega, R., Landesman-Lazer conditions for problems with “one-side unbounded” nonlinearities, Nonlinear Anal., 9, 1313-1317 (1985) · Zbl 0624.35033 · doi:10.1016/0362-546X(85)90090-2
[14] Kannan, R.; Ortega, R., Superlinear elliptic boundary value problems, Czechoslovak Math. J., 37, 112, 386-399 (1987) · Zbl 0668.35032 · doi:10.21136/CMJ.1987.102166
[15] Ruf, B.; Srikanth, PN, Multiplicity results for superlinear elliptic problems with partial interference with the spectrum, J. Math. Anal. Appl., 118, 15-23 (1986) · Zbl 0601.35042 · doi:10.1016/0022-247X(86)90286-6
[16] Silva, EAB, Linking theorems and applications to semilinear elliptic problems at resonance, Nonlinear Anal., 16, 455-477 (1991) · Zbl 0731.35042 · doi:10.1016/0362-546X(91)90070-H
[17] Schechter, M., Critical point methods, Nonlinear Anal., 69, 987-999 (2008) · Zbl 1157.35050 · doi:10.1016/j.na.2008.02.061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.