Abdel-Gawad, H. I.; Tantawy, M.; Abdel-Aziz, B.; Bekir, Ahmet Analytic solutions of fractal and fractional time derivative-Burgers-Nagumo equation. (English) Zbl 07489860 Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 237, 14 p. (2021). MSC: 35R11 35C08 35K57 PDF BibTeX XML Cite \textit{H. I. Abdel-Gawad} et al., Int. J. Appl. Comput. Math. 7, No. 6, Paper No. 237, 14 p. (2021; Zbl 07489860) Full Text: DOI OpenURL
Iwabuchi, Tsukasa Analyticity and large time behavior for the Burgers equation and the quasi-geostrophic equation, the both with the critical dissipation. (English) Zbl 1441.35255 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 855-876 (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35R11 35B40 35Q35 PDF BibTeX XML Cite \textit{T. Iwabuchi}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 37, No. 4, 855--876 (2020; Zbl 1441.35255) Full Text: DOI arXiv OpenURL
Li, Kaiqiang; Wang, Weike Pointwise stability of shock wave for 2D anisotropic viscous conservation laws with large perturbation. (English) Zbl 1437.35058 Nonlinear Anal., Real World Appl. 52, Article ID 103045, 24 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35B35 35L65 35L67 35R11 35K15 35K58 PDF BibTeX XML Cite \textit{K. Li} and \textit{W. Wang}, Nonlinear Anal., Real World Appl. 52, Article ID 103045, 24 p. (2020; Zbl 1437.35058) Full Text: DOI OpenURL
Li, Kaiqiang; Wang, Weike Decay of solutions to anisotropic conservation laws with large initial data. (English) Zbl 1478.35146 J. Math. Anal. Appl. 468, No. 2, 674-694 (2018). Reviewer: Amaury C. Alvarez (Rio de Janeiro) MSC: 35L65 35L45 35L60 35R11 35B40 PDF BibTeX XML Cite \textit{K. Li} and \textit{W. Wang}, J. Math. Anal. Appl. 468, No. 2, 674--694 (2018; Zbl 1478.35146) Full Text: DOI arXiv OpenURL
Achleitner, Franz; Ueda, Yoshihiro Asymptotic stability of traveling wave solutions for nonlocal viscous conservation laws with explicit decay rates. (English) Zbl 06932128 J. Evol. Equ. 18, No. 2, 923-946 (2018). MSC: 47J35 26A33 35C07 PDF BibTeX XML Cite \textit{F. Achleitner} and \textit{Y. Ueda}, J. Evol. Equ. 18, No. 2, 923--946 (2018; Zbl 06932128) Full Text: DOI arXiv OpenURL
Chmaj, Adam Existence of travelling waves in the fractional Burgers equation. (English) Zbl 1380.65219 Bull. Aust. Math. Soc. 97, No. 1, 102-109 (2018). MSC: 65M22 35Q53 35R11 PDF BibTeX XML Cite \textit{A. Chmaj}, Bull. Aust. Math. Soc. 97, No. 1, 102--109 (2018; Zbl 1380.65219) Full Text: DOI OpenURL
Mao, Zhiping; Karniadakis, George Em Fractional Burgers equation with nonlinear non-locality: spectral vanishing viscosity and local discontinuous Galerkin methods. (English) Zbl 1380.65280 J. Comput. Phys. 336, 143-163 (2017). MSC: 65M60 35R11 76M22 76M10 PDF BibTeX XML Cite \textit{Z. Mao} and \textit{G. E. Karniadakis}, J. Comput. Phys. 336, 143--163 (2017; Zbl 1380.65280) Full Text: DOI OpenURL
Ignat, Liviu I.; Ignat, Tatiana I. Long-time behavior for a nonlocal convection diffusion equation. (English) Zbl 1370.35055 J. Math. Anal. Appl. 455, No. 1, 816-831 (2017). MSC: 35B40 35C06 35C20 45G10 PDF BibTeX XML Cite \textit{L. I. Ignat} and \textit{T. I. Ignat}, J. Math. Anal. Appl. 455, No. 1, 816--831 (2017; Zbl 1370.35055) Full Text: DOI arXiv OpenURL
Chung, Jaywan; Kwon, Ohsang Asymptotic behavior for the viscous Burgers equation with a stationary source. (English) Zbl 1358.35154 J. Math. Phys. 57, No. 10, 101506, 10 p. (2016). Reviewer: Boris A. Malomed (Tel Aviv) MSC: 35Q53 35B40 76N15 PDF BibTeX XML Cite \textit{J. Chung} and \textit{O. Kwon}, J. Math. Phys. 57, No. 10, 101506, 10 p. (2016; Zbl 1358.35154) Full Text: DOI OpenURL
Yang, Xiao-Jun; Machado, J. A. Tenreiro; Hristov, Jordan Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow. (English) Zbl 1354.35180 Nonlinear Dyn. 84, No. 1, 3-7 (2016). MSC: 35R11 35Q35 35K57 35Q79 PDF BibTeX XML Cite \textit{X.-J. Yang} et al., Nonlinear Dyn. 84, No. 1, 3--7 (2016; Zbl 1354.35180) Full Text: DOI Link OpenURL
Jakubowski, Tomasz; Serafin, Grzegorz Pointwise estimates for solutions of fractal Burgers equation. (English) Zbl 1366.35217 J. Differ. Equations 261, No. 11, 6283-6301 (2016). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 35R11 35B40 35K55 35S10 PDF BibTeX XML Cite \textit{T. Jakubowski} and \textit{G. Serafin}, J. Differ. Equations 261, No. 11, 6283--6301 (2016; Zbl 1366.35217) Full Text: DOI arXiv OpenURL
Jakubowski, Tomasz; Serafin, Grzegorz Stable estimates for source solution of critical fractal Burgers equation. (English) Zbl 1328.35277 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 130, 396-407 (2016). MSC: 35R11 PDF BibTeX XML Cite \textit{T. Jakubowski} and \textit{G. Serafin}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 130, 396--407 (2016; Zbl 1328.35277) Full Text: DOI arXiv OpenURL
Karch, Grzegorz; Pudełko, Anna; Xu, Xiaojing Two-dimensional fractal Burgers equation with step-like initial conditions. (English) Zbl 1331.35370 Math. Methods Appl. Sci. 38, No. 13, 2830-2839 (2015). MSC: 35R11 35B40 35K15 35Q53 PDF BibTeX XML Cite \textit{G. Karch} et al., Math. Methods Appl. Sci. 38, No. 13, 2830--2839 (2015; Zbl 1331.35370) Full Text: DOI OpenURL
Iwabuchi, Tsukasa Global solutions for the critical Burgers equation in the Besov spaces and the large time behavior. (English) Zbl 1320.35073 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32, No. 3, 687-713 (2015). MSC: 35B40 35R11 35G10 PDF BibTeX XML Cite \textit{T. Iwabuchi}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 32, No. 3, 687--713 (2015; Zbl 1320.35073) Full Text: DOI OpenURL
Biler, Piotr; Imbert, Cyril; Karch, Grzegorz The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. (English) Zbl 1308.35197 Arch. Ration. Mech. Anal. 215, No. 2, 497-529 (2015). MSC: 35Q35 76S05 35B30 PDF BibTeX XML Cite \textit{P. Biler} et al., Arch. Ration. Mech. Anal. 215, No. 2, 497--529 (2015; Zbl 1308.35197) Full Text: DOI arXiv Backlinks: MO OpenURL
Biler, Piotr; Imbert, Cyril; Karch, Grzegorz Barenblatt profiles for a nonlocal porous medium equation. (English. Abridged French version) Zbl 1221.35209 C. R., Math., Acad. Sci. Paris 349, No. 11-12, 641-645 (2011). MSC: 35K59 35K65 35K15 35R11 35B40 PDF BibTeX XML Cite \textit{P. Biler} et al., C. R., Math., Acad. Sci. Paris 349, No. 11--12, 641--645 (2011; Zbl 1221.35209) Full Text: DOI arXiv HAL OpenURL
Biler, Piotr; Karch, Grzegorz; Monneau, Régis Nonlinear diffusion of dislocation density and self-similar solutions. (English) Zbl 1207.82049 Commun. Math. Phys. 294, No. 1, 145-168 (2010). MSC: 82D25 35B40 35C06 74N05 PDF BibTeX XML Cite \textit{P. Biler} et al., Commun. Math. Phys. 294, No. 1, 145--168 (2010; Zbl 1207.82049) Full Text: DOI arXiv OpenURL
Alibaud, Nathaël; Andreianov, Boris Non-uniqueness of weak solutions for the fractal Burgers equation. (English) Zbl 1201.35006 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 4, 997-1016 (2010). Reviewer: Nasser-eddine Tatar (Dhahran) MSC: 35A02 35R11 35L45 35L65 35L67 35L82 35S10 35S30 PDF BibTeX XML Cite \textit{N. Alibaud} and \textit{B. Andreianov}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 4, 997--1016 (2010; Zbl 1201.35006) Full Text: DOI arXiv OpenURL
Chan, Chi Hin; Czubak, Magdalena Regularity of solutions for the critical \(N\)-dimensional Burgers’ equation. (English) Zbl 1189.35354 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 2, 471-501 (2010). MSC: 35R11 35Q35 35B65 86A05 35B45 35D30 PDF BibTeX XML Cite \textit{C. H. Chan} and \textit{M. Czubak}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, No. 2, 471--501 (2010; Zbl 1189.35354) Full Text: DOI arXiv OpenURL
Miao, Changxing; Wu, Gang Global well-posedness of the critical Burgers equation in critical Besov spaces. (English) Zbl 1184.35003 J. Differ. Equations 247, No. 6, 1673-1693 (2009). Reviewer: Dorothee Haroske (Jena) MSC: 35A01 35K55 35Q53 46E35 35R11 PDF BibTeX XML Cite \textit{C. Miao} and \textit{G. Wu}, J. Differ. Equations 247, No. 6, 1673--1693 (2009; Zbl 1184.35003) Full Text: DOI arXiv OpenURL
Xu, Xiaojing Local well-posedness and ill-posedness for the fractal Burgers equation in homogeneous Sobolev spaces. (English) Zbl 1155.35420 Math. Methods Appl. Sci. 32, No. 3, 359-370 (2009). MSC: 35Q35 PDF BibTeX XML Cite \textit{X. Xu}, Math. Methods Appl. Sci. 32, No. 3, 359--370 (2009; Zbl 1155.35420) Full Text: DOI OpenURL
Wu, Gang; Yuan, Jia Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces. (English) Zbl 1151.35048 J. Math. Anal. Appl. 340, No. 2, 1326-1335 (2008). Reviewer: Dorothee Haroske (Jena) MSC: 35K55 35K15 PDF BibTeX XML Cite \textit{G. Wu} and \textit{J. Yuan}, J. Math. Anal. Appl. 340, No. 2, 1326--1335 (2008; Zbl 1151.35048) Full Text: DOI OpenURL