Trace formulas applied to the Riemann \(\zeta \)-function. (English) Zbl 1440.11086

Kuru, Şengül (ed.) et al., Integrability, supersymmetry and coherent states. A volume in honour of Professor Véronique Hussin. In part selected contributions from the 6th international workshop on new challenges in quantum mechanics: integrability and supersymmetry, Valladolid, Spain, June 27–30, 2017. Cham: Springer. CRM Ser. Math. Phys., 231-253 (2019).
Summary: We use a spectral theory perspective to reconsider properties of the Riemann zeta function. In particular, new integral representations are derived and used to present its value at odd positive integers.
For the entire collection see [Zbl 1421.81004].


11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
Full Text: DOI arXiv


[1] R. Apéry, Irrationalité de ζ(2) et ζ(3). Astérisque 61, 11-13 (1979) · Zbl 0401.10049
[2] F. Beukers, A note on the irrationality of ζ(2) and ζ(3). Bull. Lond. Math. Soc. 11, 268-272 (1979) · Zbl 0421.10023
[3] M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford Science Publications, Oxford, 2009) · Zbl 1215.81002
[4] A.A. Bytsenko, G. Cognola, L. Vanzo, S. Zerbini, Quantum fields and extended objects in space-times with constant curvature spatial section. Phys. Rep. 266, 1-126 (1996)
[5] S. Coleman, Aspects of Symmetry: Selected Lectures of Sidney Coleman (Cambridge University Press, Cambridge, 1985)
[6] L.A. Dikii, The zeta function of an ordinary differential equation on a finite interval. Izv. Akad. Nauk SSSR Ser. Mat. 19(4), 187-200 (1955)
[7] L.A. Dikii, Trace formulas for Sturm-Liouville differential operators. Am. Math. Soc. Transl. (2) 18, 81-115 (1961) · Zbl 0098.28701
[8] J.S. Dowker, R. Critchley, Effective Lagrangian and energy momentum tensor in de Sitter space. Phys. Rev. D13, 3224-3232 (1976)
[9] R.J. Dwilewicz, J. Mináč, Values of the Riemann zeta function at integers. MATerials MATemàtics 2009(6), 26 pp
[10] E. Elizalde, Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics, vol. 855 (Springer, Berlin, 2012) · Zbl 1250.81004
[11] G. Esposito, A.Y. Kamenshchik, G. Pollifrone, Euclidean Quantum Gravity on Manifolds with Boundary. Fundamental Theories of Physics, vol. 85 (Kluwer, Dordrecht, 1997) · Zbl 0905.53051
[12] S.R. Finch, Mathematical Constants. Encyclopedia of Mathematics and Its Applications, vol. 94 (Cambridge University Press, Cambridge, 2003)
[13] F. Gesztesy, K. Kirsten, Effective Computation of Traces, Determinants, and ζ-Functions for Sturm-Liouville Operators. J. Funct. Anal. 276, 520-562 (2019) · Zbl 06988448
[14] I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition, prepared by A. Jeffrey, (Academic, San Diego, 1980) · Zbl 0521.33001
[15] M. Haase, The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169 (Birkhäuser, Basel, 2006) · Zbl 1101.47010
[16] S.W. Hawking, Zeta function regularization of path integrals in curved space-time. Commun. Math. Phys. 55, 133-148 (1977) · Zbl 0407.58024
[17] P. Henrici, Applied and Computational Complex Analysis, Vol. I: Power Series-Integration-Conformal Mapping-Location of Zeros, reprinted 1988 (Wiley, New York, 1974) · Zbl 0313.30001
[18] K. Kirsten, Spectral Functions in Mathematics and Physics (Chapman&Hall/CRC, Boca Raton, 2002)
[19] K. Kirsten, A.J. McKane, Functional determinants by contour integration methods. Ann. Phys. 308, 502-527 (2003) · Zbl 1051.58014
[20] K. Kirsten, A.J. McKane, Functional determinants for general Sturm-Liouville problems. J. Phys. A 37, 4649-4670 (2004) · Zbl 1064.34016
[21] M.S. Klamkin (ed.), Problems in Applied Mathematics: Selections from SIAM Review (SIAM, Philadelphia, 1990) · Zbl 0718.00001
[22] E. Lindelöf, Le Calcul des Résides et ses Applications a la Théorie des Fonctions (Chelsea, New York, 1947)
[23] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics. Grundlehren, vol. 52, 3rd edn. (Springer, Berlin, 1966) · Zbl 0143.08502
[24] M.S. Milgram, Integral and series representations of Riemann’s zeta function and Dirichlet’s eta function and a medley of related results. J. Math. 2013, article ID 181724, 17p. · Zbl 1280.11047
[25] K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, River Edge, 2001) · Zbl 1025.81003
[26] D.B. Ray, I.M. Singer, R-Torsion and the Laplacian on Riemannian Manifolds. Adv. Math. 7, 145-210 (1971) · Zbl 0239.58014
[27] S.K. Sekatskii, Novel integral representations of the Riemann zeta-function and Dirichlet eta-function, closed expressions for Laurent series expansions of powers of trigonometric functions and digamma function, and summation rules, arXiv:1606.02150
[28] H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions (Kluwer, Dordrecht, 2001) · Zbl 1014.33001
[29] A. van der Poorten, A proof that Euler missed …. Apéry’s proof of the irrationality of ζ(3). An informal report. Math. Intell. 1(4), 195-203 (1979) · Zbl 0409.10028
[30] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn., reprinted 1986 (Cambridge University Press, Cambridge, 1927) · JFM 45.0433.02
[31] Wikipedia: Apery’s constant, https://en.wikipedia.org/wiki/Apery’s_constant
[32] Wikipedia: Riemann zeta function, https://en.wikipedia.org/wiki/Riemann_zeta_function
[33] WolframMathWorld: Apery’s constant, http://mathworld.wolfram.com/AperysConstant.html
[34] WolframMathWorld: Riemann Zeta Function, http://mathworld.wolfram.com/RiemannZetaFunction.html
[35] W. Zudilin, An elementary proof · Zbl 1204.11112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.