Al-Omari, Shrideh K. A fractional Fourier integral operator and its extension to classes of function spaces. (English) Zbl 1446.46026 Adv. Difference Equ. 2018, Paper No. 195, 9 p. (2018). MSC: 46F12 42A38 44A15 44A35 44A40 26A33 PDF BibTeX XML Cite \textit{S. K. Al-Omari}, Adv. Difference Equ. 2018, Paper No. 195, 9 p. (2018; Zbl 1446.46026) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf Qasem On a class of generalized Meijer-Laplace transforms of Fox function type kernels and their extension to a class of Boehmians. (English) Zbl 1398.46033 Georgian Math. J. 25, No. 1, 1-8 (2018). MSC: 46F12 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Georgian Math. J. 25, No. 1, 1--8 (2018; Zbl 1398.46033) Full Text: DOI OpenURL
Al-Omari, Shrideh Khalaf Q. On generalization of Fourier and Hartley transforms for some quotient class of sequences. (English) Zbl 1463.46065 Vladikavkaz. Mat. Zh. 18, No. 4, 3-14 (2016). MSC: 46F12 46F05 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Vladikavkaz. Mat. Zh. 18, No. 4, 3--14 (2016; Zbl 1463.46065) Full Text: MNR OpenURL
Al-Omari, S. K. Q. A class of Boehmians for a recent generalization of Hankel-Clifford transformation of arbitrary order. (English) Zbl 1365.46034 Afr. Mat. 27, No. 5-6, 877-888 (2016). Reviewer: Deshna Loonker (Jodhpur) MSC: 46F12 44A99 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari}, Afr. Mat. 27, No. 5--6, 877--888 (2016; Zbl 1365.46034) Full Text: DOI OpenURL
Nemzer, Dennis Extending the Stieltjes transform. II. (English) Zbl 1329.46039 Fract. Calc. Appl. Anal. 17, No. 4, 1060-1074 (2014). Reviewer: P. K. Banerji (Jodhpur) MSC: 46F12 44A15 44A10 44A35 PDF BibTeX XML Cite \textit{D. Nemzer}, Fract. Calc. Appl. Anal. 17, No. 4, 1060--1074 (2014; Zbl 1329.46039) Full Text: DOI OpenURL
Al-Omari, S. K. Q.; Kılıçman, Adem On the generalized Krätzel transform and its extension to Bohemian spaces. (English) Zbl 1470.44008 Abstr. Appl. Anal. 2013, Article ID 841585, 7 p. (2013). MSC: 44A40 46F12 PDF BibTeX XML Cite \textit{S. K. Q. Al-Omari} and \textit{A. Kılıçman}, Abstr. Appl. Anal. 2013, Article ID 841585, 7 p. (2013; Zbl 1470.44008) Full Text: DOI OpenURL