Levine, Marc; Yang, Yaping; Zhao, Gufang Algebraic elliptic cohomology and flops. II: SL-cobordism. (English) Zbl 1484.14051 Adv. Math. 384, Article ID 107726, 66 p. (2021). MSC: 14F43 55N22 14E15 55P42 55N34 14E30 PDF BibTeX XML Cite \textit{M. Levine} et al., Adv. Math. 384, Article ID 107726, 66 p. (2021; Zbl 1484.14051) Full Text: DOI arXiv OpenURL
Navarro, A.; Navarro, J. On the Riemann-Roch formula without projective hypotheses. (English) Zbl 1468.14015 Trans. Am. Math. Soc. 374, No. 2, 755-772 (2021). MSC: 14C40 14F42 19E15 19E20 19L10 PDF BibTeX XML Cite \textit{A. Navarro} and \textit{J. Navarro}, Trans. Am. Math. Soc. 374, No. 2, 755--772 (2021; Zbl 1468.14015) Full Text: DOI arXiv OpenURL
Joachimi, Ruth Thick ideals in equivariant and motivic stable homotopy categories. (English) Zbl 1475.55023 Ohsawa, Takeo (ed.) et al., Bousfield classes and Ohkawa’s theorem. Selected contributions given at the workshop, Nagoya, Japan, August 28–30, 2015. Singapore: Springer. Springer Proc. Math. Stat. 309, 109-219 (2020). Reviewer: James D. Quigley (Ithaca) MSC: 55U99 14F42 55P91 PDF BibTeX XML Cite \textit{R. Joachimi}, Springer Proc. Math. Stat. 309, 109--219 (2020; Zbl 1475.55023) Full Text: DOI arXiv OpenURL
Röndigs, Oliver; Spitzweck, Markus; Østvær, Paul Arne The motivic Hopf map solves the homotopy limit problem for \(K\)-theory. (English) Zbl 1423.14157 Doc. Math. 23, 1405-1424 (2018). MSC: 14F42 55P42 PDF BibTeX XML Cite \textit{O. Röndigs} et al., Doc. Math. 23, 1405--1424 (2018; Zbl 1423.14157) Full Text: DOI arXiv OpenURL
Levine, Marc Vladimir Voevodsky – an appreciation. (English) Zbl 1408.14003 Bull. Am. Math. Soc., New Ser. 55, No. 4, 405-425 (2018). Reviewer: Bernhard Köck (Southampton) MSC: 14-03 19-03 01A60 01A61 14F42 19E15 55P42 PDF BibTeX XML Cite \textit{M. Levine}, Bull. Am. Math. Soc., New Ser. 55, No. 4, 405--425 (2018; Zbl 1408.14003) Full Text: DOI OpenURL
Navarro, A. Riemann-Roch for homotopy invariant \(K\)-theory and Gysin morphisms. (English) Zbl 1391.14017 Adv. Math. 328, 501-554 (2018). Reviewer: Piotr Krasoń (Szczecin) MSC: 14C40 14C35 14F20 14F35 PDF BibTeX XML Cite \textit{A. Navarro}, Adv. Math. 328, 501--554 (2018; Zbl 1391.14017) Full Text: DOI arXiv OpenURL
Navarro, Alberto On Grothendieck’s Riemann-Roch theorem. (English) Zbl 1376.14013 Expo. Math. 35, No. 3, 326-342 (2017). MSC: 14C40 19E20 14C35 PDF BibTeX XML Cite \textit{A. Navarro}, Expo. Math. 35, No. 3, 326--342 (2017; Zbl 1376.14013) Full Text: DOI arXiv OpenURL
Levine, Marc An overview of motivic homotopy theory. (English) Zbl 1345.14027 Acta Math. Vietnam. 41, No. 3, 379-407 (2016). MSC: 14F42 19E15 55P42 55Q40 14C25 PDF BibTeX XML Cite \textit{M. Levine}, Acta Math. Vietnam. 41, No. 3, 379--407 (2016; Zbl 1345.14027) Full Text: DOI OpenURL
Levine, Marc The Adams-Novikov spectral sequence and Voevodsky’s slice tower. (English) Zbl 1432.55030 Geom. Topol. 19, No. 5, 2691-2740 (2015). MSC: 55T15 14F42 55P42 PDF BibTeX XML Cite \textit{M. Levine}, Geom. Topol. 19, No. 5, 2691--2740 (2015; Zbl 1432.55030) Full Text: DOI arXiv OpenURL
Kondo, Satoshi; Yasuda, Seidai The Riemann-Roch theorem without denominators in motivic homotopy theory. (English) Zbl 1317.19012 J. Pure Appl. Algebra 218, No. 8, 1478-1495 (2014). MSC: 19L10 19E15 14F42 14C35 14C40 PDF BibTeX XML Cite \textit{S. Kondo} and \textit{S. Yasuda}, J. Pure Appl. Algebra 218, No. 8, 1478--1495 (2014; Zbl 1317.19012) Full Text: DOI OpenURL
Hornbostel, Jens Preorientations of the derived motivic multiplicative group. (English) Zbl 1281.55009 Algebr. Geom. Topol. 13, No. 5, 2667-2712 (2013); correction ibid. 18, No. 2, 1257-1258 (2018). Reviewer: Benoît Fresse (Villeneuve d’Ascq) MSC: 55P42 14F42 18M60 19E20 PDF BibTeX XML Cite \textit{J. Hornbostel}, Algebr. Geom. Topol. 13, No. 5, 2667--2712 (2013; Zbl 1281.55009) Full Text: DOI arXiv OpenURL
Spitzweck, Markus Slices of motivic Landweber spectra. (English) Zbl 1249.14008 J. \(K\)-Theory 9, No. 1, 103-117 (2012). Reviewer: Gereon Quick (Cambridge) MSC: 14F42 55N20 14F43 18E30 PDF BibTeX XML Cite \textit{M. Spitzweck}, J. \(K\)-Theory 9, No. 1, 103--117 (2012; Zbl 1249.14008) Full Text: DOI arXiv Link OpenURL
Dugger, Daniel; Isaksen, Daniel C. The motivic Adams spectral sequence. (English) Zbl 1206.14041 Geom. Topol. 14, No. 2, 967-1014 (2010). Reviewer: Gereon Quick (Cambridge) MSC: 14F42 55T15 PDF BibTeX XML Cite \textit{D. Dugger} and \textit{D. C. Isaksen}, Geom. Topol. 14, No. 2, 967--1014 (2010; Zbl 1206.14041) Full Text: DOI arXiv OpenURL
Levine, Marc Comparison of cobordism theories. (English) Zbl 1191.14023 J. Algebra 322, No. 9, 3291-3317 (2009). Reviewer: Hans U. Boden (Hamilton/Ontario) MSC: 14F35 PDF BibTeX XML Cite \textit{M. Levine}, J. Algebra 322, No. 9, 3291--3317 (2009; Zbl 1191.14023) Full Text: DOI arXiv OpenURL
Panin, Ivan; Pimenov, Konstantin; Röndigs, Oliver On the relation of Voevodsky’s algebraic cobordism to Quillen’s \(K\)-theory. (English) Zbl 1205.14023 Invent. Math. 175, No. 2, 435-451 (2009). Reviewer: Claudio Pedrini (Genova) MSC: 14F43 PDF BibTeX XML Cite \textit{I. Panin} et al., Invent. Math. 175, No. 2, 435--451 (2009; Zbl 1205.14023) Full Text: DOI arXiv OpenURL