Nalzaro, J. B. Characterizations of open and closed maps in a bigeneralized topological space (BGTS). (English) Zbl 1519.54007 J. Anal. Appl. 21, No. 2, 101-112 (2023). MSC: 54E55 54A05 PDF BibTeX XML Cite \textit{J. B. Nalzaro}, J. Anal. Appl. 21, No. 2, 101--112 (2023; Zbl 1519.54007) Full Text: Link
Das, Birojit; Bhattacharya, Baby; Chakraborty, Jayasree; Tripathy, Binod Chandra Generalized fuzzy closed sets in a fuzzy bitopological space via \(\gamma \)-open sets. (English) Zbl 1488.54022 Afr. Mat. 32, No. 3-4, 333-345 (2021). MSC: 54A40 54E55 PDF BibTeX XML Cite \textit{B. Das} et al., Afr. Mat. 32, No. 3--4, 333--345 (2021; Zbl 1488.54022) Full Text: DOI
Das, Birojit; Chakraborty, Jayasree; Paul, Gayatri; Bhattacharya, Baby A new approach for some applications of generalized fuzzy closed sets. (English) Zbl 1476.54005 Comput. Appl. Math. 40, No. 2, Paper No. 44, 14 p. (2021). MSC: 54A40 54E55 PDF BibTeX XML Cite \textit{B. Das} et al., Comput. Appl. Math. 40, No. 2, Paper No. 44, 14 p. (2021; Zbl 1476.54005) Full Text: DOI
Kokilavani, V.; Priyadarshini, S. Meena Mildly \(\alpha\) generalized closed sets and its closed mappings. (English) Zbl 1463.54006 South East Asian J. Math. Math. Sci. 16, No. 1A, 75-88 (2020). MSC: 54A05 54C10 PDF BibTeX XML Cite \textit{V. Kokilavani} and \textit{S. M. Priyadarshini}, South East Asian J. Math. Math. Sci. 16, No. 1A, 75--88 (2020; Zbl 1463.54006) Full Text: Link
Kokilavani, V.; Priyadarshini, S. Meena \(\mathcal{C}\ \text m \alpha \text g\) continuous function in topological spaces. (English) Zbl 1463.54050 South East Asian J. Math. Math. Sci. 16, No. 1A, 15-22 (2020). MSC: 54C10 PDF BibTeX XML Cite \textit{V. Kokilavani} and \textit{S. M. Priyadarshini}, South East Asian J. Math. Math. Sci. 16, No. 1A, 15--22 (2020; Zbl 1463.54050) Full Text: Link
Al-Omeri, Wadei; Abu-Saleem, M. \(\mathcal{I}_\mathbf{g}^*\)-closed sets via ideal topological spaces. (English) Zbl 1452.54001 Missouri J. Math. Sci. 31, No. 2, 174-191 (2019). MSC: 54A05 54C08 PDF BibTeX XML Cite \textit{W. Al-Omeri} and \textit{M. Abu-Saleem}, Missouri J. Math. Sci. 31, No. 2, 174--191 (2019; Zbl 1452.54001) Full Text: DOI Euclid
Das, B.; Bhattacharya, B.; Chakraborty, J.; Anusha, G.; Paul, A. A new type of generalized closed set via \(\gamma \)-open set in a fuzzy bitopological space. (English) Zbl 1480.54008 Proyecciones 38, No. 3, 511-536 (2019). Reviewer: Francisco Gallego Lupiáñez (Madrid) MSC: 54A40 PDF BibTeX XML Cite \textit{B. Das} et al., Proyecciones 38, No. 3, 511--536 (2019; Zbl 1480.54008) Full Text: DOI
Rajakumar, Somasundaram On regular generalized \(\delta\)-closed sets in topological spaces. (English) Zbl 1412.54037 Sahand Commun. Math. Anal. 12, No. 1, 27-37 (2018). MSC: 54E55 PDF BibTeX XML Cite \textit{S. Rajakumar}, Sahand Commun. Math. Anal. 12, No. 1, 27--37 (2018; Zbl 1412.54037) Full Text: DOI
Baculta, Josephine Josol; Rara, Helen Moso Some regular generalized star \(b\)-separation axioms in bigeneralized topological spaces. (Some regular generalized star \(b\)-separation axiom in bigeneralized topological spaces.) (English) Zbl 1379.54001 Asian-Eur. J. Math. 11, No. 1, Article ID 1850010, 8 p. (2018). MSC: 54A05 PDF BibTeX XML Cite \textit{J. J. Baculta} and \textit{H. M. Rara}, Asian-Eur. J. Math. 11, No. 1, Article ID 1850010, 8 p. (2018; Zbl 1379.54001) Full Text: DOI
Vadivel, A.; Vijayalakshmi, B. Fuzzy almost generalized \(e\)-continuous mappings. (English) Zbl 1413.54052 J. Linear Topol. Algebra 6, No. 3, 199-206 (2017). MSC: 54A40 54C05 03E72 PDF BibTeX XML Cite \textit{A. Vadivel} and \textit{B. Vijayalakshmi}, J. Linear Topol. Algebra 6, No. 3, 199--206 (2017; Zbl 1413.54052) Full Text: Link
Özkan, Alkan Soft multi generalized regular sets in soft multi topological spaces. (English) Zbl 1372.54003 J. Adv. Stud. Topol. 8, No. 1, 9-20 (2017). MSC: 54A05 54A10 54A20 54C08 PDF BibTeX XML Cite \textit{A. Özkan}, J. Adv. Stud. Topol. 8, No. 1, 9--20 (2017; Zbl 1372.54003) Full Text: DOI
Tyagi, B. K.; Chauhan, Harsh V. S. On generalized closed sets in generalized topological spaces. (English) Zbl 1441.54003 Cubo 18, No. 1, 27-45 (2016). MSC: 54A05 54D15 PDF BibTeX XML Cite \textit{B. K. Tyagi} and \textit{H. V. S. Chauhan}, Cubo 18, No. 1, 27--45 (2016; Zbl 1441.54003) Full Text: DOI
Roy, Bishwambhar Unification of almost regular, almost normal and mildly normal topological spaces. (English) Zbl 1272.54023 Demonstr. Math. 45, No. 4, 963-974 (2012). MSC: 54D15 54A05 54C08 PDF BibTeX XML Cite \textit{B. Roy}, Demonstr. Math. 45, No. 4, 963--974 (2012; Zbl 1272.54023) Full Text: DOI
Inthumathi, V.; Krishnaprakash, S.; Rajamani, M. Strongly-\(\mathcal I\)-locally closed sets and decompositions of \(\ast\)-continuity. (English) Zbl 1240.54009 Acta Math. Hung. 130, No. 4, 358-362 (2011). Reviewer: M. N. Mukherjee (Calcutta) MSC: 54A05 PDF BibTeX XML Cite \textit{V. Inthumathi} et al., Acta Math. Hung. 130, No. 4, 358--362 (2011; Zbl 1240.54009) Full Text: DOI
Kocaman, A. H.; Yüksel, S.; Açıkgöz, A. On some strongly functions defined by \(\alpha \)-open. (English) Zbl 1197.54011 Chaos Solitons Fractals 39, No. 3, 1346-1355 (2009). MSC: 54A05 54C10 PDF BibTeX XML Cite \textit{A. H. Kocaman} et al., Chaos Solitons Fractals 39, No. 3, 1346--1355 (2009; Zbl 1197.54011) Full Text: DOI
Boonpok, Chawalit; Khampakdee, Jeeranunt Between closed sets and generalized closed sets in closure spaces. (English) Zbl 1195.54002 Acta Math. Univ. Ostrav. 16, No. 1, 3-14 (2008). MSC: 54A05 PDF BibTeX XML Cite \textit{C. Boonpok} and \textit{J. Khampakdee}, Acta Math. Univ. Ostrav. 16, No. 1, 3--14 (2008; Zbl 1195.54002) Full Text: EuDML
Noiri, Takashi The further unified theory for modifications of \(g\)-closed sets. (English) Zbl 1179.54004 Rend. Circ. Mat. Palermo (2) 57, No. 3, 411-421 (2008). Reviewer: K. Chandrasekhara Rao (Kumbakonam) MSC: 54A05 54D10 PDF BibTeX XML Cite \textit{T. Noiri}, Rend. Circ. Mat. Palermo (2) 57, No. 3, 411--421 (2008; Zbl 1179.54004) Full Text: DOI
Beceren, Yusuf; Noiri, Takashi Some functions defined by \(\alpha \)-open and preopen sets. (English) Zbl 1147.54309 Chaos Solitons Fractals 37, No. 4, 1097-1103 (2008). MSC: 54C08 PDF BibTeX XML Cite \textit{Y. Beceren} and \textit{T. Noiri}, Chaos Solitons Fractals 37, No. 4, 1097--1103 (2008; Zbl 1147.54309) Full Text: DOI
Beceren, Yusuf; Noiri, Takashi Some functions defined by semi-open and \(\beta \)-open sets. (English) Zbl 1139.54312 Chaos Solitons Fractals 36, No. 5, 1225-1231 (2008). MSC: 54C08 PDF BibTeX XML Cite \textit{Y. Beceren} and \textit{T. Noiri}, Chaos Solitons Fractals 36, No. 5, 1225--1231 (2008; Zbl 1139.54312) Full Text: DOI
Al-Omari, Ahmad; Noorani, Mohd Salmi Md Regular generalized \(\omega \)-closed sets. (English) Zbl 1151.54304 Int. J. Math. Math. Sci. 2007, Article ID 16292, 11 p. (2007). MSC: 54A05 54C08 PDF BibTeX XML Cite \textit{A. Al-Omari} and \textit{M. S. M. Noorani}, Int. J. Math. Math. Sci. 2007, Article ID 16292, 11 p. (2007; Zbl 1151.54304) Full Text: DOI EuDML
Park, Jin Keun; Park, Jin Han Mildly generalized closed sets, almost normal and mildly normal spaces. (English) Zbl 1053.54502 Chaos Solitons Fractals 20, No. 5, 1103-1111 (2004). MSC: 54A05 54D15 PDF BibTeX XML Cite \textit{J. K. Park} and \textit{J. H. Park}, Chaos Solitons Fractals 20, No. 5, 1103--1111 (2004; Zbl 1053.54502) Full Text: DOI
Park, Jin Han Almost \(p\)-normal, mildly \(p\)-normal spaces and some functions. (English) Zbl 1074.54513 Chaos Solitons Fractals 18, No. 2, 267-274 (2003). MSC: 54D15 54C08 PDF BibTeX XML Cite \textit{J. H. Park}, Chaos Solitons Fractals 18, No. 2, 267--274 (2003; Zbl 1074.54513) Full Text: DOI
Cao, Jiling; Ganster, Maximilian; Reilly, Ivan On generalized closed sets. (English) Zbl 1020.54001 Topology Appl. 123, No. 1, 37-46 (2002). Reviewer: Mukherjee MSC: 54A05 54D10 54F65 PDF BibTeX XML Cite \textit{J. Cao} et al., Topology Appl. 123, No. 1, 37--46 (2002; Zbl 1020.54001) Full Text: DOI