Chu, Wenchang Infinite series identities derived from the very well-poised \(\Omega\)-sum. (English) Zbl 1466.33004 Ramanujan J. 55, No. 1, 239-270 (2021). MSC: 33C20 65B10 PDF BibTeX XML Cite \textit{W. Chu}, Ramanujan J. 55, No. 1, 239--270 (2021; Zbl 1466.33004) Full Text: DOI OpenURL
Chen, Xiaojing; Chu, Wenchang \(q\)-analogues of Guillera’s two series for \(\pi^{\pm 2}\) with convergence rate \(\frac{27}{64}\). (English) Zbl 1479.33010 Int. J. Number Theory 17, No. 1, 71-90 (2021). MSC: 33D15 05A30 11B65 33D05 PDF BibTeX XML Cite \textit{X. Chen} and \textit{W. Chu}, Int. J. Number Theory 17, No. 1, 71--90 (2021; Zbl 1479.33010) Full Text: DOI OpenURL
Zhao, Yue A modular proof of two of Ramanujan’s formulae for \(1/ \pi\). (English) Zbl 1448.11083 J. Aust. Math. Soc. 109, No. 1, 131-144 (2020). Reviewer: Tim Huber (Edinburg) MSC: 11F03 11F20 11F27 PDF BibTeX XML Cite \textit{Y. Zhao}, J. Aust. Math. Soc. 109, No. 1, 131--144 (2020; Zbl 1448.11083) Full Text: DOI OpenURL
Guillera, Jesús A method for proving Ramanujan’s series for \(1/\pi\). (English) Zbl 1440.33019 Ramanujan J. 52, No. 2, 421-431 (2020). Reviewer: Richard B. Paris (Dundee) MSC: 33E05 11F03 33C20 33C75 PDF BibTeX XML Cite \textit{J. Guillera}, Ramanujan J. 52, No. 2, 421--431 (2020; Zbl 1440.33019) Full Text: DOI arXiv OpenURL
Wei, Chuanan \(q\)-analogues of several \(\pi\)-formulas. (English) Zbl 1482.11029 Proc. Am. Math. Soc. 148, No. 6, 2287-2296 (2020). Reviewer: Uğur Duran (Iskenderun) MSC: 11B65 05A30 33D15 PDF BibTeX XML Cite \textit{C. Wei}, Proc. Am. Math. Soc. 148, No. 6, 2287--2296 (2020; Zbl 1482.11029) Full Text: DOI arXiv OpenURL
Cooper, Shaun; Zudilin, Wadim Hypergeometric modular equations. (English) Zbl 1428.33014 J. Aust. Math. Soc. 107, No. 3, 338-366 (2019). MSC: 33C20 11B65 11F11 11Y60 PDF BibTeX XML Cite \textit{S. Cooper} and \textit{W. Zudilin}, J. Aust. Math. Soc. 107, No. 3, 338--366 (2019; Zbl 1428.33014) Full Text: DOI arXiv OpenURL
Srivastava, H. M.; Vyas, Yashoverdhan; Fatawat, Kalpana Extensions of the classical theorems for very well-poised hypergeometric functions. (English) Zbl 1416.33015 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 367-397 (2019). MSC: 33C20 33C90 40A25 65B10 PDF BibTeX XML Cite \textit{H. M. Srivastava} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 367--397 (2019; Zbl 1416.33015) Full Text: DOI arXiv OpenURL
Guo, Victor J. W.; Zudilin, Wadim On a \(q\)-deformation of modular forms. (English) Zbl 1445.11014 J. Math. Anal. Appl. 475, No. 2, 1636-1646 (2019). Reviewer: Thomas Ernst (Uppsala) MSC: 11B65 33C05 11F03 PDF BibTeX XML Cite \textit{V. J. W. Guo} and \textit{W. Zudilin}, J. Math. Anal. Appl. 475, No. 2, 1636--1646 (2019; Zbl 1445.11014) Full Text: DOI arXiv OpenURL
Zudilin, Wadim A hypergeometric version of the modularity of rigid Calabi-Yau manifolds. (English) Zbl 1456.11073 SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 086, 16 p. (2018). Reviewer: Noriko Yui (Kingston) MSC: 11F33 11T24 14G10 14J32 14J33 33C20 PDF BibTeX XML Cite \textit{W. Zudilin}, SIGMA, Symmetry Integrability Geom. Methods Appl. 14, Paper 086, 16 p. (2018; Zbl 1456.11073) Full Text: DOI arXiv OpenURL
Sun, Zhi-Hong Congruences for sums involving Franel numbers. (English) Zbl 1428.11013 Int. J. Number Theory 14, No. 1, 123-142 (2018). MSC: 11A07 11B83 11E25 05A10 05A19 PDF BibTeX XML Cite \textit{Z.-H. Sun}, Int. J. Number Theory 14, No. 1, 123--142 (2018; Zbl 1428.11013) Full Text: DOI OpenURL
Yang, Yifan Ramanujan-type identities for Shimura curves. (English) Zbl 1410.11076 Isr. J. Math. 214, No. 2, 699-731 (2016). MSC: 11G18 11G15 PDF BibTeX XML Cite \textit{Y. Yang}, Isr. J. Math. 214, No. 2, 699--731 (2016; Zbl 1410.11076) Full Text: DOI arXiv Link OpenURL
Osburn, Robert; Zudilin, Wadim On the (K.2) supercongruence of Van Hamme. (English) Zbl 1400.11062 J. Math. Anal. Appl. 433, No. 1, 706-711 (2016). Reviewer: Olaf Ninnemann (Uffing am Staffelsee) MSC: 11B65 11A07 33C20 33F10 PDF BibTeX XML Cite \textit{R. Osburn} and \textit{W. Zudilin}, J. Math. Anal. Appl. 433, No. 1, 706--711 (2016; Zbl 1400.11062) Full Text: DOI arXiv OpenURL
Zhang, Wenlong Common extension of the Watson and Whipple sums and Ramanujan-like \(\pi\)-formulae. (English) Zbl 1400.33035 Integral Transforms Spec. Funct. 26, No. 8, 600-618 (2015). MSC: 33F05 33C20 65B10 PDF BibTeX XML Cite \textit{W. Zhang}, Integral Transforms Spec. Funct. 26, No. 8, 600--618 (2015; Zbl 1400.33035) Full Text: DOI OpenURL
Wei, Chuanan; Wang, Xiaoxia; Dai, Linlin Series expansions for \(1/\pi^m\) and \(\pi^m\). (English) Zbl 1409.11143 J. Math. Anal. Appl. 421, No. 2, 1247-1253 (2015). MSC: 11Y60 40A05 33C20 PDF BibTeX XML Cite \textit{C. Wei} et al., J. Math. Anal. Appl. 421, No. 2, 1247--1253 (2015; Zbl 1409.11143) Full Text: DOI arXiv OpenURL
Chu, Wenchang; Zhang, Wenlong Accelerating Dougall’s \(_{5}F_{4}\)-sum and infinite series involving \(\pi\). (English) Zbl 1282.33024 Math. Comput. 83, No. 285, 475-512 (2014). Reviewer: Roelof Koekoek (Delft) MSC: 33D15 05A15 PDF BibTeX XML Cite \textit{W. Chu} and \textit{W. Zhang}, Math. Comput. 83, No. 285, 475--512 (2014; Zbl 1282.33024) Full Text: DOI OpenURL
Chisholm, Sarah; Deines, Alyson; Long, Ling; Nebe, Gabriele; Swisher, Holly \(p\)-adic analogues of Ramanujan type formulas for \(1/\pi\). (English) Zbl 1296.11058 Mathematics 1, No. 1, 9-30 (2013). MSC: 11G05 11F11 44A20 11F33 PDF BibTeX XML Cite \textit{S. Chisholm} et al., Mathematics 1, No. 1, 9--30 (2013; Zbl 1296.11058) Full Text: DOI OpenURL
Wei, Chuanan; Gong, Dianxuan Extensions of Ramanujan’s two formulas for \(1/\pi\). (English) Zbl 1297.11151 J. Number Theory 133, No. 7, 2206-2216 (2013). MSC: 11Y60 33C20 PDF BibTeX XML Cite \textit{C. Wei} and \textit{D. Gong}, J. Number Theory 133, No. 7, 2206--2216 (2013; Zbl 1297.11151) Full Text: DOI arXiv OpenURL
Cooper, Shaun Sporadic sequences, modular forms and new series for \(1/\pi\). (English) Zbl 1336.11031 Ramanujan J. 29, No. 1-3, 163-183 (2012). MSC: 11F11 11F27 11Y60 PDF BibTeX XML Cite \textit{S. Cooper}, Ramanujan J. 29, No. 1--3, 163--183 (2012; Zbl 1336.11031) Full Text: DOI OpenURL
Chan, Heng Huat; Cooper, Shaun Rational analogues of Ramanujan’s series for \(1/\pi\). (English) Zbl 1268.11165 Math. Proc. Camb. Philos. Soc. 153, No. 2, 361-383 (2012). MSC: 11Y60 PDF BibTeX XML Cite \textit{H. H. Chan} and \textit{S. Cooper}, Math. Proc. Camb. Philos. Soc. 153, No. 2, 361--383 (2012; Zbl 1268.11165) Full Text: DOI OpenURL
Guillera, Jesús; Zudilin, Wadim “Divergent” Ramanujan-type supercongruences. (English) Zbl 1276.11027 Proc. Am. Math. Soc. 140, No. 3, 765-777 (2012). Reviewer: Enzo Bonacci (Latina) MSC: 11B65 11A07 33C20 33F10 PDF BibTeX XML Cite \textit{J. Guillera} and \textit{W. Zudilin}, Proc. Am. Math. Soc. 140, No. 3, 765--777 (2012; Zbl 1276.11027) Full Text: DOI arXiv OpenURL
Chu, Wenchang \(\pi \)-formulas implied by Dougall’s summation theorem for \(_{5} F _{4}\)-series. (English) Zbl 1242.33009 Ramanujan J. 26, No. 2, 251-255 (2011). Reviewer: Peter Massopust (München) MSC: 33C20 40A25 65B10 PDF BibTeX XML Cite \textit{W. Chu}, Ramanujan J. 26, No. 2, 251--255 (2011; Zbl 1242.33009) Full Text: DOI OpenURL
Borwein, D.; Borwein, J. M.; Glasser, M. L.; Wan, J. G. Moments of Ramanujan’s generalized elliptic integrals and extensions of Catalan’s constant. (English) Zbl 1228.11183 J. Math. Anal. Appl. 384, No. 2, 478-496 (2011). Reviewer: Cristinel Mortici (Targoviste) MSC: 11Y60 33E05 PDF BibTeX XML Cite \textit{D. Borwein} et al., J. Math. Anal. Appl. 384, No. 2, 478--496 (2011; Zbl 1228.11183) Full Text: DOI OpenURL
Baruah, Nayandeep Deka; Berndt, Bruce C. Eisenstein series and Ramanujan-type series for \(1 / \pi\). (English) Zbl 1204.33005 Ramanujan J. 23, No. 1-3, 17-44 (2010). MSC: 33C05 33E05 11F11 11R29 PDF BibTeX XML Cite \textit{N. D. Baruah} and \textit{B. C. Berndt}, Ramanujan J. 23, No. 1--3, 17--44 (2010; Zbl 1204.33005) Full Text: DOI OpenURL
Baruah, Nayandeep Deka; Berndt, Bruce C. Ramanujan’s Eisenstein series and new hypergeometric-like series for \(1/\pi ^{2}\). (English) Zbl 1185.33002 J. Approx. Theory 160, No. 1-2, 135-153 (2009). Reviewer: Nele De Schepper (Gent) MSC: 33C05 33E05 11F11 11R29 PDF BibTeX XML Cite \textit{N. D. Baruah} and \textit{B. C. Berndt}, J. Approx. Theory 160, No. 1--2, 135--153 (2009; Zbl 1185.33002) Full Text: DOI OpenURL
Zudilin, Wadim Ramanujan-type supercongruences. (English) Zbl 1231.11147 J. Number Theory 129, No. 8, 1848-1857 (2009). Reviewer: Florian Luca (Morelia) MSC: 11Y55 33C20 11B65 11F33 PDF BibTeX XML Cite \textit{W. Zudilin}, J. Number Theory 129, No. 8, 1848--1857 (2009; Zbl 1231.11147) Full Text: DOI arXiv OpenURL