Guo, Zhengguang; Chen, Fangru Regularity via one vorticity component for the 3D axisymmetric MHD equations. (English) Zbl 07747214 Math. Nachr. 296, No. 2, 675-688 (2023). MSC: 35Q35 76D05 76W05 76D17 35B65 35B07 35D30 42B25 PDF BibTeX XML Cite \textit{Z. Guo} and \textit{F. Chen}, Math. Nachr. 296, No. 2, 675--688 (2023; Zbl 07747214) Full Text: DOI
Berestova, Svetlana A.; Prosviryakov, Evgenii Yu. An inhomogeneous steady-state convection of a vertical vortex fluid. (English) Zbl 07743396 Russ. J. Nonlinear Dyn. 19, No. 2, 167-186 (2023). MSC: 76R10 76D17 80A19 PDF BibTeX XML Cite \textit{S. A. Berestova} and \textit{E. Yu. Prosviryakov}, Russ. J. Nonlinear Dyn. 19, No. 2, 167--186 (2023; Zbl 07743396) Full Text: DOI MNR
Liu, Qiao; Pan, Meiling Remarks on regularity criteria for the 3d Navier-Stokes equations. (English) Zbl 1517.35181 Indian J. Pure Appl. Math. 54, No. 3, 868-875 (2023). MSC: 35Q35 35D30 35B65 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{M. Pan}, Indian J. Pure Appl. Math. 54, No. 3, 868--875 (2023; Zbl 1517.35181) Full Text: DOI
Pak, Jisong; Sin, Cholmin; Baranovskii, Evgenii S. Regularity criterion for 3D shear-thinning fluids via one component of velocity. (English) Zbl 1518.35554 Appl. Math. Optim. 88, No. 2, Paper No. 48, 14 p. (2023). MSC: 35Q35 35D30 35D35 35B65 76A05 PDF BibTeX XML Cite \textit{J. Pak} et al., Appl. Math. Optim. 88, No. 2, Paper No. 48, 14 p. (2023; Zbl 1518.35554) Full Text: DOI
Agarwal, Ravi P.; Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra On the regularity criterion on one velocity component for the micropolar fluid equations. (English) Zbl 1514.35342 Math. Model. Anal. 28, No. 2, 271-284 (2023). MSC: 35Q35 35B65 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Math. Model. Anal. 28, No. 2, 271--284 (2023; Zbl 1514.35342) Full Text: DOI
Chen, Zhengmao; Wu, Fan Blow-up criteria of the simplified Ericksen-Leslie system. (English) Zbl 1515.35206 Bound. Value Probl. 2023, Paper No. 41, 13 p. (2023). MSC: 35Q35 35B44 76D03 PDF BibTeX XML Cite \textit{Z. Chen} and \textit{F. Wu}, Bound. Value Probl. 2023, Paper No. 41, 13 p. (2023; Zbl 1515.35206) Full Text: DOI
Barker, Tobias; Wang, Wendong Estimates of the singular set for the Navier-Stokes equations with supercritical assumptions on the pressure. (English) Zbl 1518.76013 J. Differ. Equations 365, 379-407 (2023). Reviewer: Fatma Gamze Duzgun (Ankara) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{T. Barker} and \textit{W. Wang}, J. Differ. Equations 365, 379--407 (2023; Zbl 1518.76013) Full Text: DOI arXiv
Kang, Kyungkeun; Nguyen, Dinh Duong Local regularity criteria in terms of one velocity component for the Navier-Stokes equations. (English) Zbl 1504.35229 J. Math. Fluid Mech. 25, No. 1, Paper No. 10, 15 p. (2023). MSC: 35Q30 76D03 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{K. Kang} and \textit{D. D. Nguyen}, J. Math. Fluid Mech. 25, No. 1, Paper No. 10, 15 p. (2023; Zbl 1504.35229) Full Text: DOI arXiv
Guo, Helin; Zhao, Lingling On the regularity criteria for liquid crystal flows involving the gradient of one velocity component. (English) Zbl 07667351 J. Math. Phys. 63, No. 7, Article ID 071507, 14 p. (2022). MSC: 82D30 PDF BibTeX XML Cite \textit{H. Guo} and \textit{L. Zhao}, J. Math. Phys. 63, No. 7, Article ID 071507, 14 p. (2022; Zbl 07667351) Full Text: DOI
Rahman, Mohammad Mahabubur; Yamazaki, Kazuo Remarks on the global regularity issue of the two-and-a-half-dimensional Hall-magnetohydrodynamics system. (English) Zbl 1498.35398 Z. Angew. Math. Phys. 73, No. 5, Paper No. 217, 29 p. (2022). MSC: 35Q30 76W05 76D05 35B65 35A01 35A02 PDF BibTeX XML Cite \textit{M. M. Rahman} and \textit{K. Yamazaki}, Z. Angew. Math. Phys. 73, No. 5, Paper No. 217, 29 p. (2022; Zbl 1498.35398) Full Text: DOI arXiv
Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra Regularity criterion for weak solutions to the Navier-Stokes involving one velocity and one vorticity components. (English) Zbl 1498.35379 Sib. Èlektron. Mat. Izv. 19, No. 1, 309-315 (2022). MSC: 35Q30 35B65 35K92 35D30 76D03 PDF BibTeX XML Cite \textit{A. M. Alghamdi} et al., Sib. Èlektron. Mat. Izv. 19, No. 1, 309--315 (2022; Zbl 1498.35379) Full Text: DOI
Larios, Adam; Rahman, Mohammad Mahabubur; Yamazaki, Kazuo Regularity criteria for the Kuramoto-Sivashinsky equation in dimensions two and three. (English) Zbl 1498.35133 J. Nonlinear Sci. 32, No. 6, Paper No. 85, 33 p. (2022). MSC: 35B65 35B10 35K35 35K51 35K58 65M70 PDF BibTeX XML Cite \textit{A. Larios} et al., J. Nonlinear Sci. 32, No. 6, Paper No. 85, 33 p. (2022; Zbl 1498.35133) Full Text: DOI arXiv
Zhao, Lingling; Li, Fengquan Regularity criteria for liquid crystal system involving one derivative component of pressure. (English) Zbl 1507.35213 Appl. Anal. 101, No. 2, 454-459 (2022). MSC: 35Q35 76A15 76D05 35B65 35D35 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{F. Li}, Appl. Anal. 101, No. 2, 454--459 (2022; Zbl 1507.35213) Full Text: DOI
Li, TianLi; Wang, Wen Global regularity criterion for the 3D incompressible Navier-Stokes equations involving the velocity partial derivative. (English) Zbl 1512.35444 Math. Probl. Eng. 2021, Article ID 5568180, 5 p. (2021). MSC: 35Q30 76D03 PDF BibTeX XML Cite \textit{T. Li} and \textit{W. Wang}, Math. Probl. Eng. 2021, Article ID 5568180, 5 p. (2021; Zbl 1512.35444) Full Text: DOI
Gala, Sadek; Ragusa, Maria Alessandra Improved regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component. (English) Zbl 1476.35172 SN Partial Differ. Equ. Appl. 2, No. 3, Paper No. 41, 5 p. (2021). MSC: 35Q30 35K15 76D03 PDF BibTeX XML Cite \textit{S. Gala} and \textit{M. A. Ragusa}, SN Partial Differ. Equ. Appl. 2, No. 3, Paper No. 41, 5 p. (2021; Zbl 1476.35172) Full Text: DOI
Chae, D.; Wolf, J. On the Serrin-type condition on one velocity component for the Navier-Stokes equations. (English) Zbl 1472.35268 Arch. Ration. Mech. Anal. 240, No. 3, 1323-1347 (2021). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 35B65 35D30 76D05 PDF BibTeX XML Cite \textit{D. Chae} and \textit{J. Wolf}, Arch. Ration. Mech. Anal. 240, No. 3, 1323--1347 (2021; Zbl 1472.35268) Full Text: DOI arXiv
Guo, Zhengguang; Li, Yafei; Skalák, Zdenĕk On conditional regularity for the MHD equations via partial components. (English) Zbl 1468.35136 J. Math. Fluid Mech. 23, No. 3, Paper No. 51, 16 p. (2021). MSC: 35Q35 35B65 76D05 76W05 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Math. Fluid Mech. 23, No. 3, Paper No. 51, 16 p. (2021; Zbl 1468.35136) Full Text: DOI
Zhang, Zujin; Zhang, Yali On regularity criteria for the Navier-Stokes equations based on one directional derivative of the velocity or one diagonal entry of the velocity gradient. (English) Zbl 1467.35245 Z. Angew. Math. Phys. 72, No. 1, Paper No. 24, 13 p. (2021). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 35B65 76D03 76D05 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{Y. Zhang}, Z. Angew. Math. Phys. 72, No. 1, Paper No. 24, 13 p. (2021; Zbl 1467.35245) Full Text: DOI
Wu, Fan A refined regularity criteria of weak solutions to the magneto-micropolar fluid equations. (English) Zbl 1464.35261 J. Evol. Equ. 21, No. 1, 725-734 (2021). MSC: 35Q35 35B65 76W05 35D30 76D05 76A05 PDF BibTeX XML Cite \textit{F. Wu}, J. Evol. Equ. 21, No. 1, 725--734 (2021; Zbl 1464.35261) Full Text: DOI
Houamed, Haroune About some possible blow-up conditions for the 3-D Navier-Stokes equations. (English) Zbl 1475.35234 J. Differ. Equations 275, 116-138 (2021). MSC: 35Q30 76D03 76D05 35B44 42B25 PDF BibTeX XML Cite \textit{H. Houamed}, J. Differ. Equations 275, 116--138 (2021; Zbl 1475.35234) Full Text: DOI arXiv
Wang, Shu; Wang, Yongxin; Liu, Jitao Regularity criteria to the incompressible axisymmetric Boussinesq equations. (English) Zbl 1454.35304 Appl. Math. Lett. 112, Article ID 106800, 7 p. (2021). MSC: 35Q35 76D05 35B65 35B45 35B07 35D30 PDF BibTeX XML Cite \textit{S. Wang} et al., Appl. Math. Lett. 112, Article ID 106800, 7 p. (2021; Zbl 1454.35304) Full Text: DOI
Li, Qiang; Yuan, Baoquan Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations. (English) Zbl 1484.35320 AIMS Math. 5, No. 1, 619-628 (2020). MSC: 35Q35 35B44 76A15 PDF BibTeX XML Cite \textit{Q. Li} and \textit{B. Yuan}, AIMS Math. 5, No. 1, 619--628 (2020; Zbl 1484.35320) Full Text: DOI
Geng, Fan; Wang, Shu; Wang, Yongxin The regularity criteria and the a priori estimate on the 3D incompressible Navier-Stokes equations in orthogonal curvilinear coordinate systems. (English) Zbl 1451.35108 J. Funct. Spaces 2020, Article ID 2816183, 9 p. (2020). MSC: 35Q30 76D05 35B45 35B65 35B07 35D30 PDF BibTeX XML Cite \textit{F. Geng} et al., J. Funct. Spaces 2020, Article ID 2816183, 9 p. (2020; Zbl 1451.35108) Full Text: DOI
Alghamdi, Ahmad M.; Gala, Sadek; Ragusa, Maria Alessandra; Yang, J. Q. Regularity criterion via two components of velocity on weak solutions to the shear thinning fluids in \(\mathbb{R}^3\). (English) Zbl 1463.35138 Comput. Appl. Math. 39, No. 3, Paper No. 234, 9 p. (2020). MSC: 35B65 35K92 76D03 35D35 PDF BibTeX XML Cite \textit{A. M. Alghamdi} et al., Comput. Appl. Math. 39, No. 3, Paper No. 234, 9 p. (2020; Zbl 1463.35138) Full Text: DOI
Larkin, N. A.; Padilha, M. V. Exponential decay and regularity of global solutions for the 3D Navier-Stokes equations posed on Lipschitz and smooth domains. (English) Zbl 1440.35237 J. Math. Fluid Mech. 22, No. 3, Paper No. 36, 20 p. (2020). MSC: 35Q30 35B40 76D03 76D05 35D35 35B65 PDF BibTeX XML Cite \textit{N. A. Larkin} and \textit{M. V. Padilha}, J. Math. Fluid Mech. 22, No. 3, Paper No. 36, 20 p. (2020; Zbl 1440.35237) Full Text: DOI
Agarwal, Ravi P.; Gala, Sadek; Ragusa, Maria Alessandra A regularity criterion of the 3D MHD equations involving one velocity and one current density component in Lorentz space. (English) Zbl 1440.35258 Z. Angew. Math. Phys. 71, No. 3, Paper No. 95, 11 p. (2020). MSC: 35Q35 35B65 76D05 76W05 35D30 46E30 PDF BibTeX XML Cite \textit{R. P. Agarwal} et al., Z. Angew. Math. Phys. 71, No. 3, Paper No. 95, 11 p. (2020; Zbl 1440.35258) Full Text: DOI arXiv
Qian, Chenyin The anisotropic regularity criteria for 3D Navier-Stokes equations involving one velocity component. (English) Zbl 1437.35546 Nonlinear Anal., Real World Appl. 54, Article ID 103094, 16 p. (2020). MSC: 35Q30 76D05 35D30 35B35 35R11 26A33 PDF BibTeX XML Cite \textit{C. Qian}, Nonlinear Anal., Real World Appl. 54, Article ID 103094, 16 p. (2020; Zbl 1437.35546) Full Text: DOI
Pineau, Benjamin; Yu, Xinwei On Prodi-Serrin type conditions for the 3D Navier-Stokes equations. (English) Zbl 1433.35240 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111612, 15 p. (2020). MSC: 35Q30 35B65 76D05 76D03 PDF BibTeX XML Cite \textit{B. Pineau} and \textit{X. Yu}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 190, Article ID 111612, 15 p. (2020; Zbl 1433.35240) Full Text: DOI
Beirão da Veiga, Hugo; Yang, Jiaqi Regularity criteria for Navier-Stokes equations with slip boundary conditions on non-flat boundaries via two velocity components. (English) Zbl 1420.35180 Adv. Nonlinear Anal. 9, 633-643 (2020). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} and \textit{J. Yang}, Adv. Nonlinear Anal. 9, 633--643 (2020; Zbl 1420.35180) Full Text: DOI arXiv
Rencławowicz, Joanna; Zajączkowski, Wojciech M. On some regularity criteria for axisymmetric Navier-Stokes equations. (English) Zbl 1448.76055 J. Math. Fluid Mech. 21, No. 4, Paper No. 51, 14 p. (2019). MSC: 76D03 76D05 PDF BibTeX XML Cite \textit{J. Rencławowicz} and \textit{W. M. Zajączkowski}, J. Math. Fluid Mech. 21, No. 4, Paper No. 51, 14 p. (2019; Zbl 1448.76055) Full Text: DOI arXiv
Chemin, Jean-Yves; Gallagher, Isabelle; Zhang, Ping Some remarks about the possible blow-up for the Navier-Stokes equations. (English) Zbl 1428.35277 Commun. Partial Differ. Equations 44, No. 12, 1387-1405 (2019). MSC: 35Q30 76D03 76D05 35B44 42B25 93C20 PDF BibTeX XML Cite \textit{J.-Y. Chemin} et al., Commun. Partial Differ. Equations 44, No. 12, 1387--1405 (2019; Zbl 1428.35277) Full Text: DOI arXiv
Zhao, Lingling; Wang, Wendong; Wang, Suyu Blow-up criteria for the 3D liquid crystal flows involving two velocity components. (English) Zbl 1448.76024 Appl. Math. Lett. 96, 75-80 (2019). MSC: 76A15 35Q30 35B44 35D35 PDF BibTeX XML Cite \textit{L. Zhao} et al., Appl. Math. Lett. 96, 75--80 (2019; Zbl 1448.76024) Full Text: DOI
Liu, Qiao The 3D Boussinesq equations with regularity in one directional derivative of the pressure. (English) Zbl 1428.35377 Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3005-3019 (2019). MSC: 35Q35 35B65 76D03 PDF BibTeX XML Cite \textit{Q. Liu}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 6, 3005--3019 (2019; Zbl 1428.35377) Full Text: DOI
Guo, Zhengguang; Li, Yafei; Skalák, Zdenĕk Regularity criteria of the incompressible Navier-Stokes equations via only one entry of velocity gradient. (English) Zbl 1421.35244 J. Math. Fluid Mech. 21, No. 3, Paper No. 35, 15 p. (2019). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Math. Fluid Mech. 21, No. 3, Paper No. 35, 15 p. (2019; Zbl 1421.35244) Full Text: DOI
Liu, Qiao Regularity criterion for the 3D micropolar fluid equations in terms of pressure. (English) Zbl 1416.35059 Bull. Malays. Math. Sci. Soc. (2) 42, No. 4, 1305-1317 (2019). MSC: 35B65 35Q35 76W05 35Q30 35D30 PDF BibTeX XML Cite \textit{Q. Liu}, Bull. Malays. Math. Sci. Soc. (2) 42, No. 4, 1305--1317 (2019; Zbl 1416.35059) Full Text: DOI
Zhang, Zujin; Yuan, Weijun; Zhou, Yong Some remarks on the Navier-Stokes equations with regularity in one direction. (English) Zbl 07088742 Appl. Math., Praha 64, No. 3, 301-308 (2019). MSC: 35B65 35Q30 76D03 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Appl. Math., Praha 64, No. 3, 301--308 (2019; Zbl 07088742) Full Text: DOI
Beirão da Veiga, Hugo; Bemelmans, Josef; Brand, Johannes On a two components condition for regularity of the 3D Navier-Stokes equations under physical slip boundary conditions on non-flat boundaries. (English) Zbl 1420.35179 Math. Ann. 374, No. 3-4, 1559-1596 (2019). MSC: 35Q30 76D05 35B65 76D10 PDF BibTeX XML Cite \textit{H. Beirão da Veiga} et al., Math. Ann. 374, No. 3--4, 1559--1596 (2019; Zbl 1420.35179) Full Text: DOI
Bae, Hantaek; Kang, Kyungkeun Regularity condition of the incompressible Navier-Stokes equations in terms of one velocity component. (English) Zbl 1417.35092 Appl. Math. Lett. 94, 120-125 (2019). MSC: 35Q30 35B44 35B65 PDF BibTeX XML Cite \textit{H. Bae} and \textit{K. Kang}, Appl. Math. Lett. 94, 120--125 (2019; Zbl 1417.35092) Full Text: DOI
Han, Bin; Lei, Zhen; Li, Dong; Zhao, Na Sharp one component regularity for Navier-Stokes. (English) Zbl 1412.76021 Arch. Ration. Mech. Anal. 231, No. 2, 939-970 (2019). Reviewer: Jürgen Socolowsky (Brandenburg an der Havel) MSC: 76D03 35Q30 PDF BibTeX XML Cite \textit{B. Han} et al., Arch. Ration. Mech. Anal. 231, No. 2, 939--970 (2019; Zbl 1412.76021) Full Text: DOI arXiv
Liu, Qiao On 3D MHD equations with regularity in one directional derivative of the velocity. (English) Zbl 1442.76146 Comput. Math. Appl. 76, No. 10, 2375-2383 (2018). MSC: 76W05 35B65 35Q35 PDF BibTeX XML Cite \textit{Q. Liu}, Comput. Math. Appl. 76, No. 10, 2375--2383 (2018; Zbl 1442.76146) Full Text: DOI
Liu, Longshen; Bai, Meng Remarks on pressure regularity criterion for the 3D Boussinesq equations. (English) Zbl 1434.35109 Comput. Math. Appl. 76, No. 7, 1661-1668 (2018). MSC: 35Q35 35B65 76D03 35D30 PDF BibTeX XML Cite \textit{L. Liu} and \textit{M. Bai}, Comput. Math. Appl. 76, No. 7, 1661--1668 (2018; Zbl 1434.35109) Full Text: DOI
Yamazaki, Kazuo On the Navier-Stokes equations in scaling-invariant spaces in any dimension. (English) Zbl 1410.35144 Rev. Mat. Iberoam. 34, No. 4, 1515-1540 (2018). MSC: 35Q35 35B65 42B25 76D05 35R11 PDF BibTeX XML Cite \textit{K. Yamazaki}, Rev. Mat. Iberoam. 34, No. 4, 1515--1540 (2018; Zbl 1410.35144) Full Text: DOI
Zhang, Zujin; Wu, Chupeng Some new multiplicative Sobolev inequalities with applications to the Navier-Stokes equations. (English) Zbl 1421.35258 Ann. Pol. Math. 121, No. 3, 279-290 (2018). MSC: 35Q30 35B65 76D03 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{C. Wu}, Ann. Pol. Math. 121, No. 3, 279--290 (2018; Zbl 1421.35258) Full Text: DOI
Liu, Qiao; Zhao, Jihong Blowup criteria in terms of pressure for the 3D nonlinear dissipative system modeling electro-diffusion. (English) Zbl 1408.35154 J. Evol. Equ. 18, No. 4, 1675-1696 (2018). MSC: 35Q35 35B44 35K55 76W05 76N10 78A57 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{J. Zhao}, J. Evol. Equ. 18, No. 4, 1675--1696 (2018; Zbl 1408.35154) Full Text: DOI
Pineau, Benjamin; Yu, Xinwei A new Prodi-Serrin type regularity criterion in velocity directions. (English) Zbl 1419.35153 J. Math. Fluid Mech. 20, No. 4, 1737-1744 (2018). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{B. Pineau} and \textit{X. Yu}, J. Math. Fluid Mech. 20, No. 4, 1737--1744 (2018; Zbl 1419.35153) Full Text: DOI
Ma, Liangliang Blow-up criteria and regularity criterion for the three-dimensional magnetic Bénard system in the multiplier space. (English) Zbl 1404.35365 Result. Math. 73, No. 3, Paper No. 103, 22 p. (2018). MSC: 35Q35 35B65 35Q30 76D05 35B44 35D35 76W05 35D30 76R10 35B45 PDF BibTeX XML Cite \textit{L. Ma}, Result. Math. 73, No. 3, Paper No. 103, 22 p. (2018; Zbl 1404.35365) Full Text: DOI
Zhao, Lingling; Li, Fengquan On the regularity criteria for liquid crystal flows. (English) Zbl 1400.35058 Z. Angew. Math. Phys. 69, No. 5, Paper No. 125, 13 p. (2018). MSC: 35B65 35Q35 76A15 PDF BibTeX XML Cite \textit{L. Zhao} and \textit{F. Li}, Z. Angew. Math. Phys. 69, No. 5, Paper No. 125, 13 p. (2018; Zbl 1400.35058) Full Text: DOI
Neustupa, Jiří A contribution to the theory of regularity of a weak solution to the Navier-Stokes equations via one component of velocity and other related quantities. (English) Zbl 1401.35243 J. Math. Fluid Mech. 20, No. 3, 1249-1267 (2018). MSC: 35Q30 76D03 76D05 PDF BibTeX XML Cite \textit{J. Neustupa}, J. Math. Fluid Mech. 20, No. 3, 1249--1267 (2018; Zbl 1401.35243) Full Text: DOI
Wang, Wendong; Zhang, Liqun; Zhang, Zhifei On the interior regularity criteria of the 3-D Navier-Stokes equations involving two velocity components. (English) Zbl 1397.35184 Discrete Contin. Dyn. Syst. 38, No. 5, 2609-2627 (2018). MSC: 35Q30 35B65 76D05 35B44 35D30 PDF BibTeX XML Cite \textit{W. Wang} et al., Discrete Contin. Dyn. Syst. 38, No. 5, 2609--2627 (2018; Zbl 1397.35184) Full Text: DOI arXiv
Guo, Zhengguang; Kučera, Petr; Skalák, Zdeněk The application of anisotropic troisi inequalities to the conditional regularity for the Navier-Stokes equations. (English) Zbl 1393.35144 Nonlinearity 31, No. 8, 3707-3725 (2018). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{Z. Guo} et al., Nonlinearity 31, No. 8, 3707--3725 (2018; Zbl 1393.35144) Full Text: DOI
Zhang, Zujin An improved regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field. (English) Zbl 1393.35152 Bull. Math. Sci. 8, No. 1, 33-47 (2018). Reviewer: Gheorghe Moroşanu (Budapest) MSC: 35Q30 35B65 76D03 PDF BibTeX XML Cite \textit{Z. Zhang}, Bull. Math. Sci. 8, No. 1, 33--47 (2018; Zbl 1393.35152) Full Text: DOI
Liu, Qiao; Wang, Pei The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure. (English) Zbl 1382.35230 Nonlinear Anal., Real World Appl. 40, 290-306 (2018). MSC: 35Q35 76A15 35B65 35B44 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{P. Wang}, Nonlinear Anal., Real World Appl. 40, 290--306 (2018; Zbl 1382.35230) Full Text: DOI
Guo, Zhengguang; Kučera, Petr; Skalák, Zdeněk Regularity criterion for solutions to the Navier-Stokes equations in the whole 3D space based on two vorticity components. (English) Zbl 1378.35217 J. Math. Anal. Appl. 458, No. 1, 755-766 (2018). MSC: 35Q30 35B65 30H25 76B99 PDF BibTeX XML Cite \textit{Z. Guo} et al., J. Math. Anal. Appl. 458, No. 1, 755--766 (2018; Zbl 1378.35217) Full Text: DOI
Liu, Qiao; Dai, Guowei On the 3D Navier-Stokes equations with regularity in pressure. (English) Zbl 1378.35222 J. Math. Anal. Appl. 458, No. 1, 497-507 (2018). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{Q. Liu} and \textit{G. Dai}, J. Math. Anal. Appl. 458, No. 1, 497--507 (2018; Zbl 1378.35222) Full Text: DOI
Ye, Zhuan; Zhang, Zujin A remark on regularity criterion for the 3D Hall-MHD equations based on the vorticity. (English) Zbl 1411.35232 Appl. Math. Comput. 301, 70-77 (2017). MSC: 35Q35 35B65 76W05 PDF BibTeX XML Cite \textit{Z. Ye} and \textit{Z. Zhang}, Appl. Math. Comput. 301, 70--77 (2017; Zbl 1411.35232) Full Text: DOI
Wang, WenDong; Zhang, ZhiFei Blow-up of critical norms for the 3-D Navier-Stokes equations. (English) Zbl 1387.35471 Sci. China, Math. 60, No. 4, 637-650 (2017). MSC: 35Q30 76D05 46E35 35B44 PDF BibTeX XML Cite \textit{W. Wang} and \textit{Z. Zhang}, Sci. China, Math. 60, No. 4, 637--650 (2017; Zbl 1387.35471) Full Text: DOI arXiv
Kukavica, Igor; Rusin, Walter; Ziane, Mohammed Localized anisotropic regularity conditions for the Navier-Stokes equations. (English) Zbl 1379.35213 J. Nonlinear Sci. 27, No. 6, 1725-1742 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{I. Kukavica} et al., J. Nonlinear Sci. 27, No. 6, 1725--1742 (2017; Zbl 1379.35213) Full Text: DOI
Skalák, Zdeněk Regularity criteria for the Navier-Stokes equations based on one or two items of the velocity gradient. (English) Zbl 1379.35217 Nonlinear Anal., Real World Appl. 38, 131-145 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{Z. Skalák}, Nonlinear Anal., Real World Appl. 38, 131--145 (2017; Zbl 1379.35217) Full Text: DOI
Zhang, Zujin; Zhong, Dingxing; Huang, Xiantong A refined regularity criterion for the Navier-Stokes equations involving one non-diagonal entry of the velocity gradient. (English) Zbl 1369.35045 J. Math. Anal. Appl. 453, No. 2, 1145-1150 (2017). MSC: 35Q30 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{Z. Zhang} et al., J. Math. Anal. Appl. 453, No. 2, 1145--1150 (2017; Zbl 1369.35045) Full Text: DOI
Larios, Adam; Pei, Yuan On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion. (English) Zbl 1368.35221 J. Differ. Equations 263, No. 2, 1419-1450 (2017). Reviewer: Bernard Ducomet (Bruyères le Châtel) MSC: 35Q35 35B65 35A01 35K51 35Q86 76B03 76D03 76W05 PDF BibTeX XML Cite \textit{A. Larios} and \textit{Y. Pei}, J. Differ. Equations 263, No. 2, 1419--1450 (2017; Zbl 1368.35221) Full Text: DOI arXiv
Zhang, Ting; Fang, Daoyuan; Chen, Hui Regularity of 3D axisymmetric Navier-Stokes equations. (English) Zbl 1364.35114 Discrete Contin. Dyn. Syst. 37, No. 4, 1923-1939 (2017). MSC: 35K15 35K55 35Q35 76A05 35B07 PDF BibTeX XML Cite \textit{T. Zhang} et al., Discrete Contin. Dyn. Syst. 37, No. 4, 1923--1939 (2017; Zbl 1364.35114) Full Text: DOI arXiv
Gala, Sadek; Ragusa, Maria Alessandra On the regularity criterion for the Navier-Stokes equations in terms of one directional derivative. (English) Zbl 1364.35237 Asian-Eur. J. Math. 10, No. 1, Article ID 1750012, 6 p. (2017). MSC: 35Q30 76F65 35B65 35D30 PDF BibTeX XML Cite \textit{S. Gala} and \textit{M. A. Ragusa}, Asian-Eur. J. Math. 10, No. 1, Article ID 1750012, 6 p. (2017; Zbl 1364.35237) Full Text: DOI
Tran, Chuong V.; Yu, Xinwei Regularity of Navier-Stokes flows with bounds for the pressure. (English) Zbl 1360.35151 Appl. Math. Lett. 67, 21-27 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{C. V. Tran} and \textit{X. Yu}, Appl. Math. Lett. 67, 21--27 (2017; Zbl 1360.35151) Full Text: DOI
Tran, Chuong V.; Yu, Xinwei Note on Prodi-Serrin-Ladyzhenskaya type regularity criteria for the Navier-Stokes equations. (English) Zbl 1355.76017 J. Math. Phys. 58, No. 1, 011501, 10 p. (2017). MSC: 76D03 76D05 35Q30 PDF BibTeX XML Cite \textit{C. V. Tran} and \textit{X. Yu}, J. Math. Phys. 58, No. 1, 011501, 10 p. (2017; Zbl 1355.76017) Full Text: DOI Link
Guo, Zhengguang; Caggio, Matteo; Skalák, Zdeněk Regularity criteria for the Navier-Stokes equations based on one component of velocity. (English) Zbl 1360.35146 Nonlinear Anal., Real World Appl. 35, 379-396 (2017). MSC: 35Q30 35B65 76D05 PDF BibTeX XML Cite \textit{Z. Guo} et al., Nonlinear Anal., Real World Appl. 35, 379--396 (2017; Zbl 1360.35146) Full Text: DOI
Mechdene, Mohamed; Gala, Sadek; Guo, Zhengguang; Ragusa, Alessandra Maria Logarithmical regularity criterion of the three-dimensional Boussinesq equations in terms of the pressure. (English) Zbl 1362.35237 Z. Angew. Math. Phys. 67, No. 5, Article ID 120, 10 p. (2016). MSC: 35Q35 76D03 35B65 PDF BibTeX XML Cite \textit{M. Mechdene} et al., Z. Angew. Math. Phys. 67, No. 5, Article ID 120, 10 p. (2016; Zbl 1362.35237) Full Text: DOI
Yamazaki, Kazuo On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces. (English) Zbl 1345.35081 Bull. Sci. Math. 140, No. 5, 575-614 (2016). Reviewer: Anthony D. Osborne (Keele) MSC: 35Q35 76W05 35B44 42B25 35B65 35Q86 PDF BibTeX XML Cite \textit{K. Yamazaki}, Bull. Sci. Math. 140, No. 5, 575--614 (2016; Zbl 1345.35081) Full Text: DOI arXiv
Axmann, Šimon; Pokorný, Milan A generalization of some regularity criteria to the Navier-Stokes equations involving one velocity component. (English) Zbl 1337.35109 Amann, Herbert (ed.) et al., Recent developments of mathematical fluid mechanics. Proceedings of the international conference on mathematical fluid dynamics on the occasion of Yoshihiro Shibata’s 60th birthday, Nara, Japan, March, 5–9, 2013. Basel: Birkhäuser/Springer (ISBN 978-3-0348-0938-2/hbk; 978-3-0348-0939-9/ebook). Advances in Mathematical Fluid Mechanics, 79-97 (2016). MSC: 35Q30 35B65 PDF BibTeX XML Cite \textit{Š. Axmann} and \textit{M. Pokorný}, in: Recent developments of mathematical fluid mechanics. Proceedings of the international conference on mathematical fluid dynamics on the occasion of Yoshihiro Shibata's 60th birthday, Nara, Japan, March, 5--9, 2013. Basel: Birkhäuser/Springer. 79--97 (2016; Zbl 1337.35109) Full Text: DOI
Skalák, Zdeněk A regularity criterion for the Navier-Stokes equations based on the gradient of one velocity component. (English) Zbl 1334.35210 J. Math. Anal. Appl. 437, No. 1, 474-484 (2016). MSC: 35Q30 35B65 76A05 PDF BibTeX XML Cite \textit{Z. Skalák}, J. Math. Anal. Appl. 437, No. 1, 474--484 (2016; Zbl 1334.35210) Full Text: DOI
Ye, Zhuan Remarks on the regularity criterion to the Navier-Stokes equations via the gradient of one velocity component. (English) Zbl 1333.35166 J. Math. Anal. Appl. 435, No. 2, 1623-1633 (2016). Reviewer: Piotr Biler (Wroclaw) MSC: 35Q30 76D05 35B65 35D30 PDF BibTeX XML Cite \textit{Z. Ye}, J. Math. Anal. Appl. 435, No. 2, 1623--1633 (2016; Zbl 1333.35166) Full Text: DOI
Qian, Chenyin A generalized regularity criterion for 3D Navier-Stokes equations in terms of one velocity component. (English) Zbl 1333.35164 J. Differ. Equations 260, No. 4, 3477-3494 (2016). MSC: 35Q30 76D05 35D30 35B65 PDF BibTeX XML Cite \textit{C. Qian}, J. Differ. Equations 260, No. 4, 3477--3494 (2016; Zbl 1333.35164) Full Text: DOI
Zhang, Zujin Navier-Stokes equations with regularity in one directional derivative of the pressure. (English) Zbl 1335.35210 Math. Methods Appl. Sci. 38, No. 17, 4019-4023 (2015). MSC: 35Q35 35B65 76D03 35B45 76D05 PDF BibTeX XML Cite \textit{Z. Zhang}, Math. Methods Appl. Sci. 38, No. 17, 4019--4023 (2015; Zbl 1335.35210) Full Text: DOI
Wang, Ke-chuang A remark on regularity criterion for the Navier-Stokes equations in a bounded domain of \(\mathbb R^N\). (English) Zbl 1381.35123 Math. Phys. Anal. Geom. 18, No. 1, Article ID 5, 8 p. (2015). MSC: 35Q30 35B45 35B65 76D05 PDF BibTeX XML Cite \textit{K.-c. Wang}, Math. Phys. Anal. Geom. 18, No. 1, Article ID 5, 8 p. (2015; Zbl 1381.35123) Full Text: DOI
Zhu, Mingxuan; Ye, Xia A new regularity criterion for the Navier-Stokes equations via partial components of the fractional derivative. (English) Zbl 1333.35219 Appl. Math. Lett. 50, 43-47 (2015). MSC: 35Q35 35B65 26A33 76D05 PDF BibTeX XML Cite \textit{M. Zhu} and \textit{X. Ye}, Appl. Math. Lett. 50, 43--47 (2015; Zbl 1333.35219) Full Text: DOI
Bie, Qunyi; Wang, Qiru; Yao, Zheng-An Regularity criteria for the 3D MHD equations in term of velocity. (English) Zbl 1329.35089 Math. Methods Appl. Sci. 38, No. 12, 2506-2516 (2015). MSC: 35B65 35B45 76W05 PDF BibTeX XML Cite \textit{Q. Bie} et al., Math. Methods Appl. Sci. 38, No. 12, 2506--2516 (2015; Zbl 1329.35089) Full Text: DOI arXiv
Zhang, Zujin; Yang, Xian A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component. (English) Zbl 1330.35301 J. Math. Anal. Appl. 432, No. 1, 603-611 (2015). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{X. Yang}, J. Math. Anal. Appl. 432, No. 1, 603--611 (2015; Zbl 1330.35301) Full Text: DOI
Zhang, Zujin An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component. (English) Zbl 1325.35147 Z. Angew. Math. Phys. 66, No. 4, 1707-1715 (2015). MSC: 35Q30 35B65 76D03 PDF BibTeX XML Cite \textit{Z. Zhang}, Z. Angew. Math. Phys. 66, No. 4, 1707--1715 (2015; Zbl 1325.35147) Full Text: DOI
Zhang, Zujin; Yang, Xian On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient. (English) Zbl 1318.35069 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 122, 169-175 (2015). MSC: 35Q30 76D03 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{X. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 122, 169--175 (2015; Zbl 1318.35069) Full Text: DOI
Skalák, Zdeněk Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient. (English) Zbl 1322.35109 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 118, 1-21 (2015). Reviewer: Gelu Paşa (Bucureşti) MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{Z. Skalák}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 118, 1--21 (2015; Zbl 1322.35109) Full Text: DOI
Fei, Minggang; Xiang, Zhaoyin On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with horizontal dissipation. (English) Zbl 1317.76093 J. Math. Phys. 56, No. 5, 051504, 13 p. (2015). MSC: 76W05 35K15 35A01 35B44 PDF BibTeX XML Cite \textit{M. Fei} and \textit{Z. Xiang}, J. Math. Phys. 56, No. 5, 051504, 13 p. (2015; Zbl 1317.76093) Full Text: DOI
Yamazaki, Kazuo On the global regularity of \(N\)-dimensional generalized Boussinesq system. (English) Zbl 1363.35065 Appl. Math., Praha 60, No. 2, 109-133 (2015). MSC: 35B65 35Q30 35Q35 35Q86 76D03 PDF BibTeX XML Cite \textit{K. Yamazaki}, Appl. Math., Praha 60, No. 2, 109--133 (2015; Zbl 1363.35065) Full Text: DOI Link
Kim, Namkwon; Kwak, Minkyu; Yoo, Minha Regularity conditions of 3D Navier-Stokes flow in terms of large spectral components. (English) Zbl 1309.35055 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 116, 75-84 (2015). MSC: 35Q30 35B65 35P30 PDF BibTeX XML Cite \textit{N. Kim} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 116, 75--84 (2015; Zbl 1309.35055) Full Text: DOI arXiv
Wei, Ruiying; Li, Yin; Yao, Zheng-an Two new regularity criteria for nematic liquid crystal flows. (English) Zbl 1305.35118 J. Math. Anal. Appl. 424, No. 1, 636-650 (2015). MSC: 35Q35 76A15 PDF BibTeX XML Cite \textit{R. Wei} et al., J. Math. Anal. Appl. 424, No. 1, 636--650 (2015; Zbl 1305.35118) Full Text: DOI
Wei, Ruiying; Yao, Zheng-an; Li, Yin Regularity criterion for the nematic liquid crystal flows in terms of velocity. (English) Zbl 1469.35179 Abstr. Appl. Anal. 2014, Article ID 234809, 4 p. (2014). MSC: 35Q35 35B65 76A15 PDF BibTeX XML Cite \textit{R. Wei} et al., Abstr. Appl. Anal. 2014, Article ID 234809, 4 p. (2014; Zbl 1469.35179) Full Text: DOI
Zhang, Zujin; Li, Peng; Zhong, Dingxing Navier-Stokes equations with regularity in two entries of the velocity gradient tensor. (English) Zbl 1364.35246 Appl. Math. Comput. 228, 546-551 (2014). MSC: 35Q30 35B65 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Appl. Math. Comput. 228, 546--551 (2014; Zbl 1364.35246) Full Text: DOI
Zhang, Zujin; Alzahrani, Faris; Hayat, Tasawar; Zhou, Yong Two new regularity criteria for the Navier-Stokes equations via two entries of the velocity Hessian tensor. (English) Zbl 1314.76028 Appl. Math. Lett. 37, 124-130 (2014). MSC: 76D05 76D03 35Q30 35B65 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Appl. Math. Lett. 37, 124--130 (2014; Zbl 1314.76028) Full Text: DOI arXiv
Yamazaki, Kazuo \((N-1)\) velocity components condition for the generalized MHD system in \(N\)-dimension. (English) Zbl 1326.35292 Kinet. Relat. Models 7, No. 4, 779-792 (2014). Reviewer: Iván Abonyi (Budapest) MSC: 35Q35 76W05 26A33 76A05 35B65 35Q86 PDF BibTeX XML Cite \textit{K. Yamazaki}, Kinet. Relat. Models 7, No. 4, 779--792 (2014; Zbl 1326.35292) Full Text: DOI
Zhang, Zujin A remark on the regularity criterion for the 3D Navier-Stokes equations involving the gradient of one velocity component. (English) Zbl 1308.35183 J. Math. Anal. Appl. 414, No. 1, 472-479 (2014). MSC: 35Q30 35B65 PDF BibTeX XML Cite \textit{Z. Zhang}, J. Math. Anal. Appl. 414, No. 1, 472--479 (2014; Zbl 1308.35183) Full Text: DOI
Zhang, Zujin MHD equations with regularity in one direction. (English) Zbl 1311.35239 Int. J. Partial Differ. Equ. 2014, Article ID 213083, 5 p. (2014). MSC: 35Q35 76W05 35B65 PDF BibTeX XML Cite \textit{Z. Zhang}, Int. J. Partial Differ. Equ. 2014, Article ID 213083, 5 p. (2014; Zbl 1311.35239) Full Text: DOI
Yamazaki, Kazuo Regularity criteria of MHD system involving one velocity and one current density component. (English) Zbl 1307.35237 J. Math. Fluid Mech. 16, No. 3, 551-570 (2014). MSC: 35Q35 35B65 PDF BibTeX XML Cite \textit{K. Yamazaki}, J. Math. Fluid Mech. 16, No. 3, 551--570 (2014; Zbl 1307.35237) Full Text: DOI
Chen, Xiaochun; Guo, Zhengguang; Zhu, Mingxuan A new regularity criterion for the 3D MHD equations involving partial components. (English) Zbl 1308.35203 Acta Appl. Math. 134, No. 1, 161-171 (2014). MSC: 35Q35 35B65 76D05 76W05 PDF BibTeX XML Cite \textit{X. Chen} et al., Acta Appl. Math. 134, No. 1, 161--171 (2014; Zbl 1308.35203) Full Text: DOI
Skalák, Zdeněk A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. (English) Zbl 1308.35177 J. Math. Phys. 55, No. 12, 121506, 6 p. (2014). MSC: 35Q30 35D30 46E35 76D03 PDF BibTeX XML Cite \textit{Z. Skalák}, J. Math. Phys. 55, No. 12, 121506, 6 p. (2014; Zbl 1308.35177) Full Text: DOI
Lin, Hongxia; Li, Shan Regularity criterion for solutions to the three-dimensional Navier-Stokes equations in the turbulent channel. (English) Zbl 1300.35076 J. Math. Anal. Appl. 420, No. 2, 1803-1813 (2014). MSC: 35Q30 76D05 35B65 35D30 76F25 PDF BibTeX XML Cite \textit{H. Lin} and \textit{S. Li}, J. Math. Anal. Appl. 420, No. 2, 1803--1813 (2014; Zbl 1300.35076) Full Text: DOI
Jia, Xuanji; Zhou, Yong Remarks on regularity criteria for the Navier-Stokes equations via one velocity component. (English) Zbl 1297.35168 Nonlinear Anal., Real World Appl. 15, 239-245 (2014). MSC: 35Q30 35B65 76D05 35D30 PDF BibTeX XML Cite \textit{X. Jia} and \textit{Y. Zhou}, Nonlinear Anal., Real World Appl. 15, 239--245 (2014; Zbl 1297.35168) Full Text: DOI
Cheskidov, A.; Shvydkoy, R. A unified approach to regularity problems for the 3D Navier-Stokes and Euler equations: the use of Kolmogorov’s dissipation range. (English) Zbl 1433.76031 J. Math. Fluid Mech. 16, No. 2, 263-273 (2014). MSC: 76D03 76B03 35Q30 35Q31 76F02 PDF BibTeX XML Cite \textit{A. Cheskidov} and \textit{R. Shvydkoy}, J. Math. Fluid Mech. 16, No. 2, 263--273 (2014; Zbl 1433.76031) Full Text: DOI arXiv
Yamazaki, Kazuo Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components. (English) Zbl 1286.76172 J. Math. Phys. 55, No. 3, 031505, 16 p. (2014). MSC: 76W05 PDF BibTeX XML Cite \textit{K. Yamazaki}, J. Math. Phys. 55, No. 3, 031505, 16 p. (2014; Zbl 1286.76172) Full Text: DOI Link
Skalák, Zdeněk On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. (English) Zbl 1291.35192 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104, 84-89 (2014). MSC: 35Q30 76D05 35B65 PDF BibTeX XML Cite \textit{Z. Skalák}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 104, 84--89 (2014; Zbl 1291.35192) Full Text: DOI
Zhang, Zujin; Zhong, Dingxing; Hu, Lin A new regularity criterion for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor. (English) Zbl 1285.35068 Acta Appl. Math. 129, No. 1, 175-181 (2014). MSC: 35Q30 76D03 76D05 35D30 35D35 35B65 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Acta Appl. Math. 129, No. 1, 175--181 (2014; Zbl 1285.35068) Full Text: DOI
Lin, Hongxia; Li, Shan Regularity criteria in terms of the pressure for the three-dimensional MHD equations. (English) Zbl 1329.76389 Appl. Math. Comput. 221, 164-168 (2013). MSC: 76W05 35Q35 35B65 PDF BibTeX XML Cite \textit{H. Lin} and \textit{S. Li}, Appl. Math. Comput. 221, 164--168 (2013; Zbl 1329.76389) Full Text: DOI
Grafke, Tobias; Grauer, Rainer; Sideris, Thomas C. Turbulence properties and global regularity of a modified Navier-Stokes equation. (English) Zbl 1284.76098 Physica D 254, 18-23 (2013). MSC: 76D06 35Q35 76F45 37K10 PDF BibTeX XML Cite \textit{T. Grafke} et al., Physica D 254, 18--23 (2013; Zbl 1284.76098) Full Text: DOI arXiv