Cao, Kai Determination of the space-dependent source term in a fourth-order parabolic problem. (English) Zbl 07558450 Appl. Math. Optim. 86, No. 2, Paper No. 24, 40 p. (2022). MSC: 90Cxx PDF BibTeX XML Cite \textit{K. Cao}, Appl. Math. Optim. 86, No. 2, Paper No. 24, 40 p. (2022; Zbl 07558450) Full Text: DOI OpenURL
Dang, Trong Duc; Bui, Duy Thanh; Luu, Thang Xuan A non-homogeneous Cauchy problem for an elliptic equation with non-constant coefficient. (English) Zbl 07518235 Appl. Anal. 101, No. 6, 2342-2371 (2022). MSC: 35J61 35R25 PDF BibTeX XML Cite \textit{T. D. Dang} et al., Appl. Anal. 101, No. 6, 2342--2371 (2022; Zbl 07518235) Full Text: DOI OpenURL
Ouaissa, Hamid; Chakib, Abdelkrim; Nachaoui, Abdeljalil; Nachaoui, Mourad On numerical approaches for solving an inverse Cauchy Stokes problem. (English) Zbl 1486.65231 Appl. Math. Optim. 85, No. 1, 1-37 (2022). MSC: 65N21 65N20 65N30 65J20 PDF BibTeX XML Cite \textit{H. Ouaissa} et al., Appl. Math. Optim. 85, No. 1, 1--37 (2022; Zbl 1486.65231) Full Text: DOI arXiv OpenURL
Goona, Nithin Kumar; Parne, Saidi Reddy; Sashidhar, S. Distributed source scheme to solve the classical form of Poisson equation using 3-d finite-difference method for improved accuracy and unrestricted source position. (English) Zbl 07431554 Math. Comput. Simul. 190, 965-975 (2021). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{N. K. Goona} et al., Math. Comput. Simul. 190, 965--975 (2021; Zbl 07431554) Full Text: DOI OpenURL
Hamida, S.; Benrabah, A. Regularized solution of an ill-posed biharmonic equation. (English) Zbl 07424507 Rend. Circ. Mat. Palermo (2) 70, No. 3, 1709-1731 (2021). MSC: 47A52 65J20 31A30 74K20 31A25 PDF BibTeX XML Cite \textit{S. Hamida} and \textit{A. Benrabah}, Rend. Circ. Mat. Palermo (2) 70, No. 3, 1709--1731 (2021; Zbl 07424507) Full Text: DOI OpenURL
Trong, Dang Duc; Hai, Dinh Nguyen Duy Backward problem for time-space fractional diffusion equations in Hilbert scales. (English) Zbl 07351724 Comput. Math. Appl. 93, 253-264 (2021). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{D. D. Trong} and \textit{D. N. D. Hai}, Comput. Math. Appl. 93, 253--264 (2021; Zbl 07351724) Full Text: DOI OpenURL
Tran Nhat Luan; Tran Thi Khieu; Tra Quoc Khanh A filter method with a priori and a posteriori parameter choice for the regularization of Cauchy problems for biharmonic equations. (English) Zbl 1460.31023 Numer. Algorithms 86, No. 4, 1721-1746 (2021). MSC: 31B30 47A52 65F22 65J20 PDF BibTeX XML Cite \textit{Tran Nhat Luan} et al., Numer. Algorithms 86, No. 4, 1721--1746 (2021; Zbl 1460.31023) Full Text: DOI OpenURL
Cheng, Wei; Zhao, Qi A modified quasi-boundary value method for a two-dimensional inverse heat conduction problem. (English) Zbl 1443.65180 Comput. Math. Appl. 79, No. 2, 293-302 (2020). MSC: 65M38 35K20 35R30 PDF BibTeX XML Cite \textit{W. Cheng} and \textit{Q. Zhao}, Comput. Math. Appl. 79, No. 2, 293--302 (2020; Zbl 1443.65180) Full Text: DOI OpenURL
Minh, Triet Le; Hoang, Quan Pham; Hong, Phong Luu; Van, Canh Vo Recovering the initial wave amplitude for nonlinear elliptic equation with locally Lipschitz source in multiple-dimensional domain. (English) Zbl 1446.35043 J. Comput. Appl. Math. 377, Article ID 112877, 15 p. (2020). MSC: 35K05 35K99 47J06 47H10 PDF BibTeX XML Cite \textit{T. Le Minh} et al., J. Comput. Appl. Math. 377, Article ID 112877, 15 p. (2020; Zbl 1446.35043) Full Text: DOI OpenURL
Luan, Tran Nhat; Khieu, Tran Thi; Khanh, Tra Quoc Regularized solution of the Cauchy problem for the biharmonic equation. (English) Zbl 1436.31021 Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 757-782 (2020). MSC: 31B30 47A52 65F22 65J20 PDF BibTeX XML Cite \textit{T. N. Luan} et al., Bull. Malays. Math. Sci. Soc. (2) 43, No. 1, 757--782 (2020; Zbl 1436.31021) Full Text: DOI OpenURL
Zhang, Hongwu; Zhang, Xiaoju Generalized Lavrentiev-type regularization method for the Cauchy problem of a semi-linear elliptic equation. (English) Zbl 1465.65117 Inverse Probl. Sci. Eng. 27, No. 8, 1120-1144 (2019). MSC: 65N20 35J61 65R30 65N12 65J20 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{X. Zhang}, Inverse Probl. Sci. Eng. 27, No. 8, 1120--1144 (2019; Zbl 1465.65117) Full Text: DOI OpenURL
Benrabah, A.; Boussetila, N. Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation. (English) Zbl 1471.65178 Inverse Probl. Sci. Eng. 27, No. 3, 340-368 (2019). MSC: 65N20 65N12 31A30 35B45 35J40 35R25 47A52 PDF BibTeX XML Cite \textit{A. Benrabah} and \textit{N. Boussetila}, Inverse Probl. Sci. Eng. 27, No. 3, 340--368 (2019; Zbl 1471.65178) Full Text: DOI OpenURL
Liu, Jun; Xiao, Mingqing Quasi-boundary value methods for regularizing the backward parabolic equation under the optimal control framework. (English) Zbl 1425.35235 Inverse Probl. 35, No. 12, Article ID 124003, 29 p. (2019). MSC: 35R30 65M32 35K05 PDF BibTeX XML Cite \textit{J. Liu} and \textit{M. Xiao}, Inverse Probl. 35, No. 12, Article ID 124003, 29 p. (2019; Zbl 1425.35235) Full Text: DOI OpenURL
Zhang, Hongwu; Zhang, Xiaoju Generalized Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation. (English) Zbl 1442.65331 Numer. Algorithms 81, No. 3, 833-851 (2019). MSC: 65N20 65J20 35J61 35J20 35J05 35B35 35P99 35A01 35A02 35R25 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{X. Zhang}, Numer. Algorithms 81, No. 3, 833--851 (2019; Zbl 1442.65331) Full Text: DOI OpenURL
Hào, Dinh Nho; Thu Giang, Le Thi; Kabanikhin, Sergey; Shishlenin, Maxim A finite difference method for the very weak solution to a Cauchy problem for an elliptic equation. (English) Zbl 1407.65268 J. Inverse Ill-Posed Probl. 26, No. 6, 835-857 (2018). MSC: 65N20 35J15 35D30 65N06 35R30 35J05 PDF BibTeX XML Cite \textit{D. N. Hào} et al., J. Inverse Ill-Posed Probl. 26, No. 6, 835--857 (2018; Zbl 1407.65268) Full Text: DOI OpenURL
Besma, Khelili; Nadjib, Boussetila; Faouzia, Rebbani A modified quasi-boundary value method for an abstract ill-posed biparabolic problem. (English) Zbl 1482.65086 Open Math. 15, 1649-1666 (2017). MSC: 65J20 47A52 35B30 35L90 35R25 PDF BibTeX XML Cite \textit{K. Besma} et al., Open Math. 15, 1649--1666 (2017; Zbl 1482.65086) Full Text: DOI OpenURL
Qin, Haihua; Lu, Jingmei A modified method for a Cauchy problem of the Helmholtz equation. (English) Zbl 1386.35480 Bull. Malays. Math. Sci. Soc. (2) 40, No. 4, 1493-1522 (2017). MSC: 35R30 65N12 65N20 PDF BibTeX XML Cite \textit{H. Qin} and \textit{J. Lu}, Bull. Malays. Math. Sci. Soc. (2) 40, No. 4, 1493--1522 (2017; Zbl 1386.35480) Full Text: DOI OpenURL
Khoa, Vo Anh; Hung, Tran The Regularity bounds for a Gevrey criterion in a kernel-based regularization of the Cauchy problem of elliptic equations. (English) Zbl 1375.35064 Appl. Math. Lett. 69, 75-81 (2017). MSC: 35B65 35R25 PDF BibTeX XML Cite \textit{V. A. Khoa} and \textit{T. T. Hung}, Appl. Math. Lett. 69, 75--81 (2017; Zbl 1375.35064) Full Text: DOI arXiv OpenURL
Khoa, Vo Anh; Truong, Mai Thanh Nhat; Duy, Nguyen Ho Minh; Tuan, Nguyen Huy The Cauchy problem of coupled elliptic sine-Gordon equations with noise: analysis of a general kernel-based regularization and reliable tools of computing. (English) Zbl 1368.65217 Comput. Math. Appl. 73, No. 1, 141-162 (2017). MSC: 65N20 65N30 35J57 35L53 35L71 PDF BibTeX XML Cite \textit{V. A. Khoa} et al., Comput. Math. Appl. 73, No. 1, 141--162 (2017; Zbl 1368.65217) Full Text: DOI arXiv OpenURL
Benrabah, Abderafik; Boussetila, Nadjib; Rebbani, Faouzia Regularization method for an ill-posed Cauchy problem for elliptic equations. (English) Zbl 1432.35244 J. Inverse Ill-Posed Probl. 25, No. 3, 311-329 (2017). MSC: 35R30 34G10 35A35 35J25 35R25 47A52 PDF BibTeX XML Cite \textit{A. Benrabah} et al., J. Inverse Ill-Posed Probl. 25, No. 3, 311--329 (2017; Zbl 1432.35244) Full Text: DOI OpenURL
Zhang, Hongwu; Wang, Renhu Modified boundary Tikhonov-type regularization method for the Cauchy problem of a semi-linear elliptic equation. (English) Zbl 1348.65158 Inverse Probl. Sci. Eng. 24, No. 7, 1249-1265 (2016). MSC: 65N20 65F22 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{R. Wang}, Inverse Probl. Sci. Eng. 24, No. 7, 1249--1265 (2016; Zbl 1348.65158) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Thang, Le Duc; Lesnic, Daniel A new general filter regularization method for Cauchy problems for elliptic equations with a locally Lipschitz nonlinear source. (English) Zbl 1328.35294 J. Math. Anal. Appl. 434, No. 2, 1376-1393 (2016). MSC: 35R25 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., J. Math. Anal. Appl. 434, No. 2, 1376--1393 (2016; Zbl 1328.35294) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Thang, Le Duc; Khoa, Vo Anh A modified integral equation method of the nonlinear elliptic equation with globally and locally Lipschitz source. (English) Zbl 1410.35282 Appl. Math. Comput. 265, 245-265 (2015). MSC: 35R20 35B35 35J61 35R25 47H10 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Math. Comput. 265, 245--265 (2015; Zbl 1410.35282) Full Text: DOI arXiv OpenURL
Frąckowiak, Andrzej; Botkin, Nikolai D.; Ciałkowski, Michał; Hoffmann, Karl-Heinz Iterative algorithm for solving the inverse heat conduction problems with the unknown source function. (English) Zbl 1329.65210 Inverse Probl. Sci. Eng. 23, No. 6, 1056-1071 (2015). MSC: 65M32 80A23 PDF BibTeX XML Cite \textit{A. Frąckowiak} et al., Inverse Probl. Sci. Eng. 23, No. 6, 1056--1071 (2015; Zbl 1329.65210) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Thang, Le Duc; Trong, Dang Duc; Khoa, Vo Anh Approximation of mild solutions of the linear and nonlinear elliptic equations. (English) Zbl 1326.65148 Inverse Probl. Sci. Eng. 23, No. 7, 1237-1266 (2015). MSC: 65N20 47J06 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Inverse Probl. Sci. Eng. 23, No. 7, 1237--1266 (2015; Zbl 1326.65148) Full Text: DOI arXiv OpenURL
Hào, Dinh Nho; van Duc, Nguyen A non-local boundary value problem method for semi-linear parabolic equations backward in time. (English) Zbl 1327.35425 Appl. Anal. 94, No. 3, 446-463 (2015). MSC: 35R25 35R30 47J06 35K58 65N20 65N21 PDF BibTeX XML Cite \textit{D. N. Hào} and \textit{N. van Duc}, Appl. Anal. 94, No. 3, 446--463 (2015; Zbl 1327.35425) Full Text: DOI OpenURL
Nguyen Huy Tuan; Le Duc Thang; Vo Anh Khoa; Thanh Tran On an inverse boundary value problem of a nonlinear elliptic equation in three dimensions. (English) Zbl 1317.35296 J. Math. Anal. Appl. 426, No. 2, 1232-1261 (2015). Reviewer: Elena V. Tabarintseva (Chelyabinsk) MSC: 35R30 35J60 PDF BibTeX XML Cite \textit{Nguyen Huy Tuan} et al., J. Math. Anal. Appl. 426, No. 2, 1232--1261 (2015; Zbl 1317.35296) Full Text: DOI OpenURL
Feng, Xiaoli; Ning, Wantao; Qian, Zhi A quasi-boundary-value method for a Cauchy problem of an elliptic equation in multiple dimensions. (English) Zbl 1321.65165 Inverse Probl. Sci. Eng. 22, No. 7, 1045-1061 (2014). MSC: 65N20 35J25 35R25 PDF BibTeX XML Cite \textit{X. Feng} et al., Inverse Probl. Sci. Eng. 22, No. 7, 1045--1061 (2014; Zbl 1321.65165) Full Text: DOI OpenURL
Nguyen, Tuan H.; Tran, Binh Thanh A regularization method for the elliptic equation with inhomogeneous source. (English) Zbl 1287.35098 ISRN Math. Anal. 2014, Article ID 525636, 8 p. (2014). MSC: 35R25 PDF BibTeX XML Cite \textit{T. H. Nguyen} and \textit{B. T. Tran}, ISRN Math. Anal. 2014, Article ID 525636, 8 p. (2014; Zbl 1287.35098) Full Text: DOI OpenURL
Wei, Ting; Wang, Jungang A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation. (English) Zbl 1282.65141 Appl. Numer. Math. 78, 95-111 (2014). MSC: 65N21 PDF BibTeX XML Cite \textit{T. Wei} and \textit{J. Wang}, Appl. Numer. Math. 78, 95--111 (2014; Zbl 1282.65141) Full Text: DOI OpenURL
Boussetila, Nadjib; Hamida, Salim; Rebbani, Faouzia Spectral regularization methods for an abstract ill-posed elliptic problem. (English) Zbl 1470.35428 Abstr. Appl. Anal. 2013, Article ID 947379, 11 p. (2013). MSC: 35R30 65J10 35R25 35J25 PDF BibTeX XML Cite \textit{N. Boussetila} et al., Abstr. Appl. Anal. 2013, Article ID 947379, 11 p. (2013; Zbl 1470.35428) Full Text: DOI OpenURL
Wang, Jun-Gang; Zhou, Yu-Bin; Wei, Ting A posteriori regularization parameter choice rule for the quasi-boundary value method for the backward time-fractional diffusion problem. (English) Zbl 1311.65123 Appl. Math. Lett. 26, No. 7, 741-747 (2013). MSC: 65M32 35K05 35R30 65M12 PDF BibTeX XML Cite \textit{J.-G. Wang} et al., Appl. Math. Lett. 26, No. 7, 741--747 (2013; Zbl 1311.65123) Full Text: DOI OpenURL
Mierzwiczak, Magdalena; Kołodziej, Jan Adam The inverse determination of the thermal contact resistance components of unidirectionally reinforced composite. (English) Zbl 1277.80010 Inverse Probl. Sci. Eng. 21, No. 2, 283-297 (2013). Reviewer: Trung Thanh Nguyen (Charlotte) MSC: 80A23 65N35 65H10 35R30 PDF BibTeX XML Cite \textit{M. Mierzwiczak} and \textit{J. A. Kołodziej}, Inverse Probl. Sci. Eng. 21, No. 2, 283--297 (2013; Zbl 1277.80010) Full Text: DOI OpenURL
Zhang, Hongwu; Wei, Ting An improved non-local boundary value problem method for a Cauchy problem of the Laplace equation. (English) Zbl 1244.65132 Numer. Algorithms 59, No. 2, 249-269 (2012). Reviewer: Ruxandra Stavre (Bucureşti) MSC: 65M30 35J05 65M12 PDF BibTeX XML Cite \textit{H. Zhang} and \textit{T. Wei}, Numer. Algorithms 59, No. 2, 249--269 (2012; Zbl 1244.65132) Full Text: DOI OpenURL
Azaïez, Mejdi; Ben Belgacem, Faker; Du, Duc Thang; Jelassi, Faten A finite element model for the data completion problem: analysis and assessment. (English) Zbl 1242.65191 Inverse Probl. Sci. Eng. 19, No. 8, 1063-1086 (2011). MSC: 65M32 35J25 35R30 65M60 PDF BibTeX XML Cite \textit{M. Azaïez} et al., Inverse Probl. Sci. Eng. 19, No. 8, 1063--1086 (2011; Zbl 1242.65191) Full Text: DOI OpenURL
Zhang, H. W.; Qin, H. H.; Wei, T. A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation. (English) Zbl 1214.35080 Int. J. Comput. Math. 88, No. 4, 839-850 (2011). MSC: 35R25 35J05 65N20 65N21 PDF BibTeX XML Cite \textit{H. W. Zhang} et al., Int. J. Comput. Math. 88, No. 4, 839--850 (2011; Zbl 1214.35080) Full Text: DOI OpenURL
Tuan, Nguyen Huy; Trong, Dang Duc; Quan, Pham Hoang A note on a Cauchy problem for the Laplace equation: Regularization and error estimates. (English) Zbl 1206.65225 Appl. Math. Comput. 217, No. 7, 2913-2922 (2010). Reviewer: Petr Sváček (Praha) MSC: 65M30 35R25 35J05 65M12 65M15 PDF BibTeX XML Cite \textit{N. H. Tuan} et al., Appl. Math. Comput. 217, No. 7, 2913--2922 (2010; Zbl 1206.65225) Full Text: DOI OpenURL