×

Numerical modelling of study the effect of the entrainment velocity, the number of Nusselt and the thickness of the non-convective zone on the stability of the pond solar. (English) Zbl 1488.35267

Summary: In this paper, the effect of the entrainment velocity, the Nusselt number, and the thickness of the salinity gradient zone \((NCZ)\) on the stability of the solar pond are studied. The modelling equations of thermal energy and mass transfer in a salt gradient solar pond are discretized by finite difference methods in the transient regime. A new border condition applicable near the equilibrium of interface between the \((NCZ)\) and the \((LCZ)\) region is proposed. We take account of the effects of both turbulent entrainment and diffusion on the growth or erosion of the gradient zone \((NCZ)\). The obtained numerical results show an additional condition of solar pond’s stability which links between the salinity gradient \((\Delta C)\) and the temperature gradient \((\Delta T)\) in the \((NCZ)\) region.

MSC:

35K05 Heat equation
76E06 Convection in hydrodynamic stability
76E15 Absolute and convective instability and stability in hydrodynamic stability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] [1] Z. Ayati and J. Biazar, On the convergence of the homotopy perturbation method, J. Egyptian Math. Soc. 23 (2), 424-428, 2015. · Zbl 1328.65112
[2] [2] P.K. Bansal and N.D. Kaushika, Salt gradient stabilized solar pond collector, Energy Convers. Manag. 21, 81-95, 1981.
[3] [3] R.S. Beniwal and R. Singh, Calculation of thermal efficiency of salt-gradient solar ponds, Heat Recov. Syst. CHP, 7 (6), 497-516, 1987.
[4] [4] T.L. Bergman, F.P. Incropera and R. Viskanta. A multi-layer model for mixing layer development in a double diffusive thermohaline system heated from below, Int. J. Heat Mass Transf. 25, 1411-1418, 1982.
[5] [5] F. Bernad, S. Casas, O. Gibert, A. Akbarzadeh, J.L. Cortina and C. Valderrama, Salinity gradient solar pond: Validation and simulation model, Sol. Energy 98, 366- 374, 2013.
[6] [6] R. Boudhiaf, A.B. Moussa and M. Baccar, A two-dimensional numerical study of hydrodynamic, heat and mass transfer and stability in a salt gradient solar pond, Energies 5 (12), 3986-4007, 2012.
[7] [7] G. Boyle, Renewable Energy: Power for a Sustainable Future, 2nd ed., Oxford, UK: Oxford University Press, 2004.
[8] [8] M.M. Dah, Etude numerique et experimentale de la stabilité des etangs solaires a gradient de sel, PhD. Thesis, University of Tunisia El Manar, 2010.
[9] [9] A. Defant, Physical Oceanography, Pergamon Press, Oxford, UK, 1961.
[10] [10] D. Gonzalez, J. Amigo, S. Lorente, A. Bejan and F.Suarez, Constructal design of salt gradient solar pond fields, Int. J. Energy Res. 10, 1428-1446, 2016.
[11] [11] A. Guesmia and N. Daili, Finite volume approximation of stationary Burgers equation, J. Anal. Appl. 6 (3), 179-193, 2008. · Zbl 1176.35135
[12] [12] A. Guesmia and N. Daili, Approche numérique de la solution entropique de l’équation d’évolution de Bürgers par la méthode des lignes, Gen. Math. Sci. 17 (2), 99-111, 2009.
[13] [13] A. Guesmia and N. Daili, Numerical approximation of fractional Burgers equation, Commun. Math. Appl. 1 (3), 1-16, 2010. · Zbl 1213.35036
[14] [14] J.R. Hull, C.E. Nielsen and P. Golding, Salinity-gradient solar ponds, CRC Press, Boca Raton, FL, 1989.
[15] [15] P.D. Lax and R.D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math. 9, 267-293, 1956. · Zbl 0072.08903
[16] [16] M.M. Ould Dah, M.Ouni, A. Guizani and A. Belghith, The influence of the heat extraction mode on the performance and stability of a mini solar pond, Appl. Energy 87, 3005-3010, 2010.
[17] [17] A. Rabl and C.E. Nielson, Solar ponds for space heating, Sol. Energy 17, 1-12, 1975.
[18] [18] K.R. Sreenivas, J.H. Arakeri and J. Srinivasan, Modeling of the dynamics of the mixed layer in solar ponds, Sol. Energy 54 (3), 193-202, 1995.
[19] [19] M. Turkyilmazoglu, An effective approach for approximate analytical solutions of the damped Duffing equation, Phys. Scr. 86, 015301, 2012. · Zbl 1273.34020
[20] [20] M. Turkyilmazoglu, Is homotopy perturbation method the traditional Taylor series expansion, Hacet. J. Math. Stat. 44 (3), 651-657, 2015. · Zbl 1396.41024
[21] [21] M. Turkyilmazoglu, Convergence accelerating in the homotopy analysis method: a new approach, Adv. Appl. Math. Mech. 10 (4), 925-947, 2018. · Zbl 1488.65214
[22] [22] M. Turkyilmazoglu, A simple algorithm for high order Newton iteration formulae and some new variants, Hacet. J. Math. Stat. 49 (1), 425-438, 2020. · Zbl 1488.49053
[23] [23] Y.F. Wang and A.A. Akbarzadeh, A parametric study on solar ponds, Sol. Energy 30, 555-562, 1983.
[24] [24] H. Wang, M. Xie and W. Sun, Nonlinear dynamic behavior of non-convective zone in salt gradient solar pond, Sol. Energy 85, 1745-1757, 2011.
[25] [25] H. Xu, Laboratory studies on dynamical process in salinity gradient solar pond, Ph.D. Thesis, Ohio State University, 1990.
[26] [26] F. Zangrando and H.J.S. Femando, A predictive model for migration of doublediffusive interfaces, Sol. Energy 113, 59-65, 1991.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.