Kumano, H.; Nakajima, H.; Ekuni, S.; Idutsu, Y.; Sasakura, H.; Suemune, I. Quantum-dot-based photon emission and media conversion for quantum information applications. (English) Zbl 1201.81028 Adv. Math. Phys. 2010, Article ID 391607, 13 p. (2010). Summary: Single-photon as well as polarization-correlated photon pair emission from a single semiconductor quantum dots is demonstrated. Single photon generation and single photon-pair generation with little uncorrelated multiphoton emission and the feasibility of media conversion of the quantum states between photon polarization and electron spin are fundamental functions for quantum information applications. Mutual media conversion for the angular momentum between photon polarization and electron spin is also achieved with high fidelity via positively charged exciton state without external magnetic field. This is a clear indication that the coupling of photon polarizations and electron spins keeps secured during whole processes before photon emission. Possibility of a metal-embedded structure is demonstrated with the observation of drastic enhancement of excitation and/or collection efficiency of luminescence as well as clear antibunching of photons generated from a quantum dot. MSC: 81P45 Quantum information, communication, networks (quantum-theoretic aspects) 81Q37 Quantum dots, waveguides, ratchets, etc. 81V80 Quantum optics 82D37 Statistical mechanics of semiconductors PDF BibTeX XML Cite \textit{H. Kumano} et al., Adv. Math. Phys. 2010, Article ID 391607, 13 p. (2010; Zbl 1201.81028) Full Text: DOI EuDML References: [1] I. Walmsley and P. Knight, “Quantum information science,” Optics & Photonics News, vol. 13, no. 11, pp. 42-49, 2002. [2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000. · Zbl 1154.91467 [3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of Modern Physics, vol. 74, no. 1, pp. 145-195, 2002. · Zbl 1152.81834 [4] A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics, vol. 1, pp. 215-223, 2007. · Zbl 1143.57014 [5] C. Gobby, Z. L. Yuan, and A. J. Shields, “Quantum key distribution over 122km of standard telecom fiber,” Applied Physics Letters, vol. 84, no. 19, pp. 3762-3764, 2004. [6] H. Takesue, S. W. Nam, Q. Zhang, et al., “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photonics, vol. 1, pp. 343-348, 2007. [7] W. T. Buttler, R. J. Hughes, P. G. Kwiat, et al., “Free-space quantum-key distribution,” Physical Review A, vol. 57, no. 4, pp. 2379-2382, 1998. [8] C. Kurtsiefer, P. Zarda, M. Halder, et al., “Quantum cryptography: a step towards global key distribution,” Nature, vol. 419, p. 450, 2002. · Zbl 1075.81505 [9] R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, “Practical free-space quantum key distribution over 10km in daylight and at night,” New Journal of Physics, vol. 4, pp. 43.1-43.14, 2002. · Zbl 1163.90311 [10] H. J. Carmichael, “Photon antibunching and squeezing for a single atom in a resonant cavity,” Physical Review Letters, vol. 55, no. 25, pp. 2790-2793, 1985. · Zbl 0583.32016 [11] J. McKeever, A. Boka, A. D. Boozer, et al., “Deterministic generation of single photons from one atom trapped in a cavity,” Science, vol. 303, no. 5666, pp. 1992-1994, 2004. [12] B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature, vol. 407, pp. 491-493, 2000. [13] C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Physical Review Letters, vol. 85, no. 2, pp. 290-293, 2000. [14] J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Physical Review Letters, vol. 93, no. 14, Article ID 147402, 4 pages, 2004. [15] A. Högele, C. Galland, M. Winger, and A. Imamo\uglu, “Photon antibunching in the photoluminescence spectra of a single carbon nanotube,” Physical Review Letters, vol. 100, no. 21, Article ID 217401, 2008. [16] E. Moreau, I. Robert, J. M. Gérard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Applied Physics Letters, vol. 79, pp. 2865-2867, 2001. [17] C. Becher, A. Kiraz, P. Michler, et al., “Nonclassical radiation from a single self-assembled InAs quantum dot,” Physical Review B, vol. 63, no. 12, Article ID 121312(R), 4 pages, 2001. [18] C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot,” Physical Review Letters, vol. 86, no. 8, pp. 1502-1505, 2001. [19] V. Zwiller, T. Aichele, W. Seifert, J. Persson, and O. Benson, “Generating visible single photons on demand with single InP quantum dots,” Applied Physics Letters, vol. 82, pp. 1509-1511, 2003. [20] X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermer, “Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals,” Applied Physics Letters, vol. 85, p. 712, 2004. [21] C. Couteau, S. Moehl, F. Tinjod, et al., “Correlated photon emission from a single 2-6 quantum dot,” Applied Physics Letters, vol. 85, p. 6251, 2004. [22] C. Santori, S. Gotzinger, Y. Yamamoto, S. Kako, K. Hoshino, and Y. Arakawa, “Photon correlation studies of single GaN quantum dots,” Applied Physics Letters, vol. 87, Article ID 051916, 3 pages, 2005. [23] K. Takemoto, Y. Sakuma, S. Hirose, et al., “Non-classical photon emission from a single InAs/InP quantum dot in the 1.3-\mu m optical-fiber band,” Japanese Journal of Applied Physics, vol. 43, pp. L993-L995, 2004. [24] T. Miyazawa, K. Takemoto, Y. Sakuma, et al., “Single-photon generation in the 1.55-\mu m optical-fiber band from an InAs/InP quantum dot,” Japanese Journal of Applied Physics, vol. 44, pp. L620-L622, 2005. [25] S. Kimura, H. Kumano, M. Endo, et al., “Photon antibunching observed from an InAlAs single quantum dot,” Japanese Journal of Applied Physics, vol. 44, pp. L793-L796, 2005. [26] M. B. Ward, T. Farrow, P. See, et al., “Electrically driven telecommunication wavelength single-photon source,” Applied Physics Letters, vol. 90, Article ID 063512, 3 pages, 2007. [27] V. D. Kulakovskii, G. Bacher, R. Weignand, et al., “Fine structure of biexciton emission in symmetric and asymmetric CdSe/ZnSe single quantum dots,” Physical Review Letters, vol. 82, no. 8, pp. 1780-1783, 1999. [28] I. A. Merkulov, A. L. Efros, and M. Rosen, “Electron spin relaxation by nuclei in semiconductor quantum dots,” Physical Review B, vol. 65, no. 20, Article ID 205309, 8 pages, 2002. [29] R. Hanbury-Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature, vol. 177, pp. 27-29, 1956. · Zbl 0078.41305 [30] H. Kumano, S. Kimura, M. Endo, et al., “Deterministic single-photon and polarization-correlated photon pair generations from a single InAlAs quantum dot,” Optoelectronics, vol. 1, pp. 39-51, 2006. [31] T. Watanuki, S. Adachi, H. Sasakura, and S. Muto, “Long spin relaxation in self-assembled InAlAs quantum dots observed by heterodyne four-wave mixing,” Applied Physics Letters, vol. 86, Article ID 063114, 3 pages, 2005. [32] R. M. Stevenson, A. J. Hudson, A. J. Bennett, et al., “Evolution of entanglement between distinguishable light states,” Physical Review Letters, vol. 101, no. 17, Article ID 170501, 4 pages, 2008. [33] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Physical Review A, vol. 64, no. 5, Article ID 052312, 15 pages, 2001. [34] C. A. Nicoll, C. L. Salter, R. M. Stevenson, et al., “MBE growth of In(Ga)As quantum dots for entangled light emission,” Journal of Crystal Growth, vol. 311, no. 7, pp. 1811-1814, 2009. [35] R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature, vol. 439, no. 7073, pp. 179-182, 2006. [36] R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,” New Journal of Physics, vol. 8, no. 2, article 29, 2006. [37] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, and D. Gershoni, “Entangled photon pairs from semiconductor quantum dots,” Physical Review Letters, vol. 96, no. 13, Article ID 130501, 4 pages, 2006. [38] M. Bayer, G. Ortner, O. Stern, et al., “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Physical Review B, vol. 65, no. 19, Article ID 195315, 23 pages, 2002. [39] I. A. Akimov, A. Hundt, T. Flissikowski, and F. Henneberger, “Fine structure of the trion triplet state in a single self-assembled semiconductor quantum dot,” Applied Physics Letters, vol. 81, p. 4730, 2002. [40] M. E. Ware, A. S. Bracker, E. Stinaff, D. Gammon, D. Gershoni, and V. L. Korenev, “Polarization spectroscopy of positive and negative trions in an InAs quantum dot,” Physica E, vol. 26, no. 1-4, pp. 55-58, 2005. [41] T. Flissikowski, I. A. Akimov, A. Hundt, and F. Henneberger, “Single-hole spin relaxation in a quantum dot,” Physical Review B, vol. 68, no. 16, Article ID 161309(R), 4 pages, 2003. [42] H. Kumano, H. Kobayashi, S. Ekuni, et al., “Excitonic spin-state preservation mediated by optical-phonon resonant excitation in a single quantum dot,” Physical Review B, vol. 78, no. 8, Article ID 081306 (R), 4 pages, 2008. [43] H. Kumano, S. Ekuni, and H. Kobayashi, “Spin-flip quenching in trion state mediated by optical phonons in a single quantum dot,” Physica Status Solidi B, vol. 246, no. 4, pp. 775-778, 2009. [44] G. V. Astakhov, A. V. Koudinov, K. V. Kavokin, et al., “Exciton spin decay modified by strong electron-hole exchange interaction,” Physical Review Letters, vol. 99, no. 1, Article ID 016601, 4 pages, 2007. [45] C. W. Lai, P. Maletinsky, A. Badolato, and A. Imamoglu, “Knight-field-enabled nuclear spin polarization in aingle quantum dots,” Physical Review Letters, vol. 96, no. 16, Article ID 167403, 2006. [46] R. Kaji, S. Adachi, H. Sasakura, and S. Muto, “Precise measurements of electron and hole g factors of single quantum dots by using nuclear field,” Applied Physics Letters, vol. 91, Article ID 261904, 2007. [47] P.-F. Braun, X. Marie, L. Lombez, et al., “Direct observation of the electron spin relaxation induced by nuclei in quantum dots,” Physical Review Letters, vol. 94, no. 11, Article ID 116601, 4 pages, 2005. · Zbl 1152.76371 [48] E. Waks, C. Santori, and Y. Yamamoto, “Security aspects of quantum key distribution with sub-Poisson light,” Physical Review A, vol. 66, no. 4, Article ID 042315, 7 pages, 2002. [49] I. Suemune, T. Akazaki, K. Tanaka, et al., “Superconductor-based quantum-dot light-emitting diodes: role of cooper pairs in generating entangled photon pairs,” Japanese Journal of Applied Physics, vol. 45, pp. 9264-9271, 2006. [50] Y. Idutsu, M. Takada, S. Ito, et al., in Proceedings of the 51st Electronic Materials Conference (EMC ’09), vol. B2, p. 15, University Park, Pennsylvania, Pa, USA, June 2009. [51] A. Malko, M. H. Baier, K. F. Karlsson, E. Pelucchi, D. Y. Oberli, and E. Kapon, “Optimization of the efficiency of single-photon sources based on quantum dots under optical excitation,” Applied Physics Letters, vol. 88, Article ID 081905, 3 pages, 2006. [52] P. Ester, L. Lackmann, S. Michaelis de Vasconcellos, M. C. Hübner, and A. Zrenner, “Single photon emission based on coherent state preparation,” Applied Physics Letters, vol. 91, Article ID 111110, 3 pages, 2007. · Zbl 1174.35032 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.