Kaur, Navneet; Joshi, Varun Soliton solution of coupled Korteweg-de Vries equation by quintic UAH tension B-spline differential quadrature method. (English) Zbl 07545083 J. Math. Anal. Appl. 514, No. 2, Article ID 126355, 30 p. (2022). MSC: 35Qxx 65Mxx 37Kxx PDF BibTeX XML Cite \textit{N. Kaur} and \textit{V. Joshi}, J. Math. Anal. Appl. 514, No. 2, Article ID 126355, 30 p. (2022; Zbl 07545083) Full Text: DOI OpenURL
Zhang, Zexuan; Zhang, Jianbing A differential-difference hierarchy related to the Toda lattice and its inverse scattering transformation. (English) Zbl 07543830 J. Math. Res. Appl. 42, No. 1, 57-72 (2022). MSC: 37K40 37K10 PDF BibTeX XML Cite \textit{Z. Zhang} and \textit{J. Zhang}, J. Math. Res. Appl. 42, No. 1, 57--72 (2022; Zbl 07543830) Full Text: DOI OpenURL
Chai, Xuedong; Zhang, Yufeng; Chen, Yong; Zhao, Shiyin The \(\bar{\partial}\)-dressing method for the (2+1)-dimensional Jimbo-Miwa equation. (English) Zbl 07541830 Proc. Am. Math. Soc. 150, No. 7, 2879-2887 (2022). MSC: 37K15 35R30 35A30 35Q51 PDF BibTeX XML Cite \textit{X. Chai} et al., Proc. Am. Math. Soc. 150, No. 7, 2879--2887 (2022; Zbl 07541830) Full Text: DOI OpenURL
Zhao, Xue-Hui; Li, Shuxia Dark soliton solutions for a variable coefficient higher-order Schrödinger equation in the dispersion decreasing fibers. (English) Zbl 07540962 Appl. Math. Lett. 132, Article ID 108159, 6 p. (2022). MSC: 35C08 35Q55 PDF BibTeX XML Cite \textit{X.-H. Zhao} and \textit{S. Li}, Appl. Math. Lett. 132, Article ID 108159, 6 p. (2022; Zbl 07540962) Full Text: DOI OpenURL
Ma, Wen-Xiu \(N\)-soliton solutions and the Hirota conditions in (1 + 1)-dimensions. (English) Zbl 07533159 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 123-133 (2022). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 123--133 (2022; Zbl 07533159) Full Text: DOI OpenURL
Kamimura, Yutaka Energy-dependent reflectionless inverse scattering. (English) Zbl 07523064 Publ. Res. Inst. Math. Sci. 58, No. 2, 379-440 (2022). MSC: 35Q53 37K10 37K40 81U40 PDF BibTeX XML Cite \textit{Y. Kamimura}, Publ. Res. Inst. Math. Sci. 58, No. 2, 379--440 (2022; Zbl 07523064) Full Text: DOI OpenURL
Ciancio, Armando; Yel, Gulnur; Kumar, Ajay; Baskonus, Haci Mehmet; Ilhan, Esin On the complex mixed dark-bright wave distributions to some conformable nonlinear integrable models. (English) Zbl 07490654 Fractals 30, No. 1, Article ID 2240018, 14 p. (2022). MSC: 35Qxx 35Cxx 37Kxx PDF BibTeX XML Cite \textit{A. Ciancio} et al., Fractals 30, No. 1, Article ID 2240018, 14 p. (2022; Zbl 07490654) Full Text: DOI OpenURL
Killip, Rowan; Vişan, Monica Orbital stability of KdV multisolitons in \(H^{-1}\). (English) Zbl 07488540 Commun. Math. Phys. 389, No. 3, 1445-1473 (2022). MSC: 35Qxx 35Bxx 37Kxx PDF BibTeX XML Cite \textit{R. Killip} and \textit{M. Vişan}, Commun. Math. Phys. 389, No. 3, 1445--1473 (2022; Zbl 07488540) Full Text: DOI arXiv OpenURL
Rizvi, Syed Tahir Raza; Ali, Kashif; Bekir, Ahmet; Nawaz, Badar; Younis, M. Investigation on the single and multiple dromions for nonlinear telegraph equation in electrical transmission line. (English) Zbl 1482.35068 Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 12, 14 p. (2022). MSC: 35C08 35L71 PDF BibTeX XML Cite \textit{S. T. R. Rizvi} et al., Qual. Theory Dyn. Syst. 21, No. 1, Paper No. 12, 14 p. (2022; Zbl 1482.35068) Full Text: DOI OpenURL
Wang, Xiaobo; Zhao, Qiliang; Jia, Man; Lou, Senyue Novel travelling wave structures for \((2+1)\)-dimensional Sawada-Kotera equation. (English) Zbl 1479.35207 Appl. Math. Lett. 124, Article ID 107638, 6 p. (2022). MSC: 35C07 35C08 35G25 PDF BibTeX XML Cite \textit{X. Wang} et al., Appl. Math. Lett. 124, Article ID 107638, 6 p. (2022; Zbl 1479.35207) Full Text: DOI OpenURL
Akbar, Yasir; Afsar, Haleem; Abbas, Shahzad; Javed, Muhammad Waqas; Ullah, Najib Dromions for the coupled Maccari’s system in fluid mechanics. (English) Zbl 07544037 Chaos Solitons Fractals 150, Article ID 111114, 16 p. (2021). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{Y. Akbar} et al., Chaos Solitons Fractals 150, Article ID 111114, 16 p. (2021; Zbl 07544037) Full Text: DOI OpenURL
Yusuf, Abdullahi; Sulaiman, Tukur A.; Inc, Mustafa; Abdel-Khalek, Sayed; Mahmoud, K. H. \(M\)-truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. (English) Zbl 07536271 AIMS Math. 6, No. 9, 9207-9221 (2021). MSC: 35A09 35E05 PDF BibTeX XML Cite \textit{A. Yusuf} et al., AIMS Math. 6, No. 9, 9207--9221 (2021; Zbl 07536271) Full Text: DOI OpenURL
Zhuang, Jianhong; Liu, Yaqing; Zhuang, Ping Variety interaction solutions comprising lump solitons for the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. (English) Zbl 1484.35331 AIMS Math. 6, No. 5, 5370-5386 (2021). MSC: 35Q51 37K40 PDF BibTeX XML Cite \textit{J. Zhuang} et al., AIMS Math. 6, No. 5, 5370--5386 (2021; Zbl 1484.35331) Full Text: DOI OpenURL
Moroke, M. C.; Muatjetjeja, B.; Adem, A. R. A generalized (2 + 1)-dimensional Calogaro-Bogoyavlenskii-Schiff equation: symbolic computation, symmetry reductions, exact solutions, conservation laws. (English) Zbl 1485.35099 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 134, 15 p. (2021). MSC: 35C05 35B06 35G25 68W30 PDF BibTeX XML Cite \textit{M. C. Moroke} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 134, 15 p. (2021; Zbl 1485.35099) Full Text: DOI OpenURL
Ghosh, Arindam; Maitra, Sarit; Chowdhury, Asesh Roy Exact solutions and symmetry analysis of a Boussinesq type equation for longitudinal waves through a magneto-electro-elastic circular rod. (English) Zbl 07489950 Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 171, 14 p. (2021). MSC: 35A21 35A25 35B06 35C08 35G20 PDF BibTeX XML Cite \textit{A. Ghosh} et al., Int. J. Appl. Comput. Math. 7, No. 4, Paper No. 171, 14 p. (2021; Zbl 07489950) Full Text: DOI arXiv OpenURL
Chai, Xuedong; Zhang, Yufeng; Zhao, Shiyin Application of the \(\bar\partial \)-dressing method to a \((2+1)\)-dimensional equation. (English. Russian original) Zbl 07483553 Theor. Math. Phys. 209, No. 3, 1717-1725 (2021); translation from Teor. Mat. Fiz. 209, No. 3, 465-474 (2021). MSC: 81T10 81T15 35J08 35R30 81U40 35C08 35G31 PDF BibTeX XML Cite \textit{X. Chai} et al., Theor. Math. Phys. 209, No. 3, 1717--1725 (2021; Zbl 07483553); translation from Teor. Mat. Fiz. 209, No. 3, 465--474 (2021) Full Text: DOI OpenURL
Hu, Beibei; Zhang, Ling; Li, Qinghong; Zhang, Ning Riemann-Hilbert problem associated with the fourth-order dispersive nonlinear Schrödinger equation in optics and magnetic mechanics. (English) Zbl 1482.35077 J. Nonlinear Math. Phys. 28, No. 4, 414-435 (2021). MSC: 35G31 35Q15 35Q60 37N15 PDF BibTeX XML Cite \textit{B. Hu} et al., J. Nonlinear Math. Phys. 28, No. 4, 414--435 (2021; Zbl 1482.35077) Full Text: DOI arXiv OpenURL
Kamdoum-Tamo, P. H.; Kenfack-Jiotsa, A.; Kofane, T. C. Solitons solutions of the complex Ginzburg-Landau equation with saturation term using Painlevé truncated approach. (English) Zbl 1478.35193 J. Appl. Nonlinear Dyn. 10, No. 2, 279-286 (2021). MSC: 35Q55 35C08 37K10 PDF BibTeX XML Cite \textit{P. H. Kamdoum-Tamo} et al., J. Appl. Nonlinear Dyn. 10, No. 2, 279--286 (2021; Zbl 1478.35193) Full Text: DOI OpenURL
Abounouh, Mostafa; Al-Moatassime, Hassan; Kaouri, Sabah Non-standard boundary conditions for the linearized Korteweg-de Vries equation. (English) Zbl 1481.65118 Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2625-2654 (2021). MSC: 65M06 35C08 35Q53 PDF BibTeX XML Cite \textit{M. Abounouh} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 8, 2625--2654 (2021; Zbl 1481.65118) Full Text: DOI OpenURL
Zhang, Sheng; Zhang, Dexin Analytical methods for the variable-coefficient KP equation and its wave solutions in weakly dispersive media. (English) Zbl 1479.35184 GEM. Int. J. Geomath. 12, Paper No. 13, 14 p. (2021). MSC: 35C05 35A20 35G25 37K10 37K40 83C15 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{D. Zhang}, GEM. Int. J. Geomath. 12, Paper No. 13, 14 p. (2021; Zbl 1479.35184) Full Text: DOI OpenURL
Wang, Haifeng; Zhang, Yufeng \( \bar\partial \)-dressing method for a few \((2+1)\)-dimensional integrable coupling systems. (English. Russian original) Zbl 1482.81040 Theor. Math. Phys. 208, No. 3, 1239-1255 (2021); translation from Teor. Mat. Fiz. 208, No. 3, 452-470 (2021). MSC: 81U40 81U15 81Q80 81T10 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Zhang}, Theor. Math. Phys. 208, No. 3, 1239--1255 (2021; Zbl 1482.81040); translation from Teor. Mat. Fiz. 208, No. 3, 452--470 (2021) Full Text: DOI OpenURL
Ma, Wen-Xiu \(N\)-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. (English) Zbl 07431516 Math. Comput. Simul. 190, 270-279 (2021). MSC: 35-XX 37-XX PDF BibTeX XML Cite \textit{W.-X. Ma}, Math. Comput. Simul. 190, 270--279 (2021; Zbl 07431516) Full Text: DOI OpenURL
Cho, Aye Aye; Mesfun, Maebel; Zhang, Da-Jun A revisit to the ABS H2 equation. (English) Zbl 1477.35216 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 093, 19 p. (2021). MSC: 35Q53 37K60 37K10 37K35 PDF BibTeX XML Cite \textit{A. A. Cho} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 093, 19 p. (2021; Zbl 1477.35216) Full Text: DOI arXiv OpenURL
Xu, Bo; Zhang, Yufeng; Zhang, Sheng Line soliton interactions for shallow ocean waves and novel solutions with peakon, ring, conical, columnar, and lump structures based on fractional KP equation. (English) Zbl 1481.35347 Adv. Math. Phys. 2021, Article ID 6664039, 15 p. (2021). MSC: 35Q35 26A24 76B15 PDF BibTeX XML Cite \textit{B. Xu} et al., Adv. Math. Phys. 2021, Article ID 6664039, 15 p. (2021; Zbl 1481.35347) Full Text: DOI OpenURL
Wang, Pan; Ma, Tian-Ping; Qi, Feng-Hua Analytical solutions for the coupled Hirota equations in the firebringent fiber. (English) Zbl 07426878 Appl. Math. Comput. 411, Article ID 126495, 6 p. (2021). MSC: 35Qxx 78Axx 37Kxx PDF BibTeX XML Cite \textit{P. Wang} et al., Appl. Math. Comput. 411, Article ID 126495, 6 p. (2021; Zbl 07426878) Full Text: DOI OpenURL
Ma, Wen-Xiu; Yong, Xuelin; Lü, Xing Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. (English) Zbl 07425573 Wave Motion 103, Article ID 102719, 7 p. (2021). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Wave Motion 103, Article ID 102719, 7 p. (2021; Zbl 07425573) Full Text: DOI OpenURL
Seadawy, Aly R.; Nasreen, Naila; Lu, Dian-chen Optical soliton and elliptic functions solutions of Sasa-Satsuma dynamical equation and its applications. (English) Zbl 07425156 Appl. Math., Ser. B (Engl. Ed.) 36, No. 2, 229-242 (2021). MSC: 35A20 35C08 53B50 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Appl. Math., Ser. B (Engl. Ed.) 36, No. 2, 229--242 (2021; Zbl 07425156) Full Text: DOI OpenURL
Devi, Munesh; Yadav, Shalini; Arora, Rajan Optimal system, invariance analysis of fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation using Lie symmetry approach. (English) Zbl 07424127 Appl. Math. Comput. 404, Article ID 126230, 15 p. (2021). MSC: 35Gxx 35Qxx PDF BibTeX XML Cite \textit{M. Devi} et al., Appl. Math. Comput. 404, Article ID 126230, 15 p. (2021; Zbl 07424127) Full Text: DOI OpenURL
Ma, Hongcai; Huang, Huaiyu; Deng, Aiping Soliton molecules and some interaction solutions for the (3+1)-dimensional Jimbo-Miwa equation. (English) Zbl 1480.35345 J. Geom. Phys. 170, Article ID 104362, 7 p. (2021). MSC: 35Q51 35Q53 35C08 35B34 PDF BibTeX XML Cite \textit{H. Ma} et al., J. Geom. Phys. 170, Article ID 104362, 7 p. (2021; Zbl 1480.35345) Full Text: DOI OpenURL
Kamdoum-Tamo, P. H.; Tala-Tebue, E.; Kenfack-Jiotsa, A.; Kofane, T. C. Exact analytical solutions: physical and/or mathematical validity. (English) Zbl 1472.35325 J. Appl. Nonlinear Dyn. 10, No. 1, 95-109 (2021). MSC: 35Q41 35Q55 PDF BibTeX XML Cite \textit{P. H. Kamdoum-Tamo} et al., J. Appl. Nonlinear Dyn. 10, No. 1, 95--109 (2021; Zbl 1472.35325) Full Text: DOI OpenURL
Lemoula, Romuald K. K.; Kamdem, Brice A.; Kuetche, Victor K.; Noule, Raïssa S.; Defo, Jean J.; Youssoufa, Saliou Kruskal’s simplification scheme in ferrite dynamics. (English) Zbl 07406107 J. Math. Phys. 62, No. 9, 093513, 12 p. (2021). MSC: 81-XX PDF BibTeX XML Cite \textit{R. K. K. Lemoula} et al., J. Math. Phys. 62, No. 9, 093513, 12 p. (2021; Zbl 07406107) Full Text: DOI OpenURL
Reĭimberganov, Anvar Aknazarovich; Rakhimov, Ilkhom Davronbekovich The soliton solutions for the nonlinear Schrödinger equation with self-consistent source. (English) Zbl 1473.35480 Izv. Irkutsk. Gos. Univ., Ser. Mat. 36, 84-94 (2021). MSC: 35Q51 35Q55 PDF BibTeX XML Cite \textit{A. A. Reĭimberganov} and \textit{I. D. Rakhimov}, Izv. Irkutsk. Gos. Univ., Ser. Mat. 36, 84--94 (2021; Zbl 1473.35480) Full Text: DOI Link OpenURL
Alam, Md. Khorshed; Hossain, Md. Dulal; Akbar, M. Ali; Gepreel, Khaled A. Determination of the rich structural wave dynamic solutions to the Caudrey-Dodd-Gibbon equation and the Lax equation. (English) Zbl 1471.35083 Lett. Math. Phys. 111, No. 4, Paper No. 103, 19 p. (2021). MSC: 35C08 35Q53 35R35 47J35 PDF BibTeX XML Cite \textit{Md. K. Alam} et al., Lett. Math. Phys. 111, No. 4, Paper No. 103, 19 p. (2021; Zbl 1471.35083) Full Text: DOI OpenURL
Mouassom, L. Fernand; Nkomom, T. Nkoa; Mvogo, Alain; Mbane, Cesar Biouele Effects of viscosity and surface tension on soliton dynamics in the generalized KdV equation for shallow water waves. (English) Zbl 1476.35207 Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105942, 24 p. (2021). MSC: 35Q35 76D45 76D05 37K40 35C08 PDF BibTeX XML Cite \textit{L. F. Mouassom} et al., Commun. Nonlinear Sci. Numer. Simul. 102, Article ID 105942, 24 p. (2021; Zbl 1476.35207) Full Text: DOI OpenURL
Frumin, Leonid L. Algorithms for solving scattering problems for the Manakov model of nonlinear Schrödinger equations. (English) Zbl 1468.65222 J. Inverse Ill-Posed Probl. 29, No. 3, 369-383 (2021). MSC: 65R32 37K15 37K40 34L25 37M15 PDF BibTeX XML Cite \textit{L. L. Frumin}, J. Inverse Ill-Posed Probl. 29, No. 3, 369--383 (2021; Zbl 1468.65222) Full Text: DOI arXiv OpenURL
Khan, Hassan; Shah, Rasool; Gómez-Aguilar, J. F.; Shoaib; Baleanu, Dumitru; Kumam, Poom Travelling waves solution for fractional-order biological population model. (English) Zbl 1469.92094 Math. Model. Nat. Phenom. 16, Paper No. 32, 24 p. (2021). MSC: 92D25 35C07 35R11 PDF BibTeX XML Cite \textit{H. Khan} et al., Math. Model. Nat. Phenom. 16, Paper No. 32, 24 p. (2021; Zbl 1469.92094) Full Text: DOI OpenURL
Zhou, Yuan; Manukure, Solomon; McAnally, Morgan Lump and rogue wave solutions to a (2+1)-dimensional Boussinesq type equation. (English) Zbl 1469.35084 J. Geom. Phys. 167, Article ID 104275, 7 p. (2021). MSC: 35C11 35C07 35C08 35Q35 35Q51 PDF BibTeX XML Cite \textit{Y. Zhou} et al., J. Geom. Phys. 167, Article ID 104275, 7 p. (2021; Zbl 1469.35084) Full Text: DOI OpenURL
Ma, Wen-Xiu \(N\)-soliton solution of a combined pKP-BKP equation. (English) Zbl 1470.35310 J. Geom. Phys. 165, Article ID 104191, 7 p. (2021). MSC: 35Q53 35Q51 37K40 37K10 35C06 PDF BibTeX XML Cite \textit{W.-X. Ma}, J. Geom. Phys. 165, Article ID 104191, 7 p. (2021; Zbl 1470.35310) Full Text: DOI OpenURL
Zhang, Xiao-Fan; Tian, Shou-Fu; Yang, Jin-Jie The Riemann-Hilbert approach for the focusing Hirota equation with single and double poles. (English) Zbl 1470.35249 Anal. Math. Phys. 11, No. 2, Paper No. 86, 18 p. (2021). MSC: 35Q15 35Q51 35Q55 45Q05 35P25 37K15 PDF BibTeX XML Cite \textit{X.-F. Zhang} et al., Anal. Math. Phys. 11, No. 2, Paper No. 86, 18 p. (2021; Zbl 1470.35249) Full Text: DOI OpenURL
Yao, Ruoxia; Li, Yan; Lou, Senyue A new set and new relations of multiple soliton solutions of (2 + 1)-dimensional Sawada-Kotera equation. (English) Zbl 1467.37066 Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105820, 11 p. (2021). MSC: 37K40 37K10 35Q51 35C08 PDF BibTeX XML Cite \textit{R. Yao} et al., Commun. Nonlinear Sci. Numer. Simul. 99, Article ID 105820, 11 p. (2021; Zbl 1467.37066) Full Text: DOI arXiv OpenURL
Zhang, Zhao; Qi, Zequn; Li, Biao Fusion and fission phenomena for \(( 2 + 1 )\)-dimensional fifth-order KdV system. (English) Zbl 1466.35320 Appl. Math. Lett. 116, Article ID 107004, 6 p. (2021). MSC: 35Q53 37K40 37K10 PDF BibTeX XML Cite \textit{Z. Zhang} et al., Appl. Math. Lett. 116, Article ID 107004, 6 p. (2021; Zbl 1466.35320) Full Text: DOI OpenURL
Dubrovin, Boris; Yang, Di; Zagier, Don On tau-functions for the KdV hierarchy. (English) Zbl 1458.14061 Sel. Math., New Ser. 27, No. 1, Paper No. 12, 48 p. (2021). Reviewer: Ahmed Lesfari (El Jadida) MSC: 14N35 37K10 53D45 05A15 33E15 PDF BibTeX XML Cite \textit{B. Dubrovin} et al., Sel. Math., New Ser. 27, No. 1, Paper No. 12, 48 p. (2021; Zbl 1458.14061) Full Text: DOI arXiv OpenURL
Rybkin, Alexei The effect of a positive bound state on the KdV solution: a case study. (English) Zbl 1462.35340 Nonlinearity 34, No. 2, 1238-1261 (2021). MSC: 35Q53 35Q55 35A09 35P10 34L40 37K15 47B35 PDF BibTeX XML Cite \textit{A. Rybkin}, Nonlinearity 34, No. 2, 1238--1261 (2021; Zbl 1462.35340) Full Text: DOI arXiv OpenURL
Gaillard, Pierre Degenerate Riemann theta functions, Fredholm and Wronskian representations of the solutions to the KdV equation and the degenerate rational case. (English) Zbl 1459.35331 J. Geom. Phys. 161, Article ID 104059, 13 p. (2021). MSC: 35Q53 PDF BibTeX XML Cite \textit{P. Gaillard}, J. Geom. Phys. 161, Article ID 104059, 13 p. (2021; Zbl 1459.35331) Full Text: DOI OpenURL
Gao, Wei; Yel, Gulnur; Baskonus, Haci Mehmet; Cattani, Carlo Complex solitons in the conformable \((2+1)\)-dimensional Ablowitz-Kaup-Newell-Segur equation. (English) Zbl 1484.35377 AIMS Math. 5, No. 1, 507-521 (2020). MSC: 35R11 26A24 35C08 35Q53 PDF BibTeX XML Cite \textit{W. Gao} et al., AIMS Math. 5, No. 1, 507--521 (2020; Zbl 1484.35377) Full Text: DOI OpenURL
Abdou, Mohammed Aly; Ouahid, Loubna; Owyed, Saud; Abdel-Baset, A. M.; Inc, Mustafa; Akinlar, Mehmet Ali; Chu, Yu-Ming Explicit solutions to the Sharma-Tasso-Olver equation. (English) Zbl 1484.35010 AIMS Math. 5, No. 6, 7272-7284 (2020). MSC: 35A09 35E05 PDF BibTeX XML Cite \textit{M. A. Abdou} et al., AIMS Math. 5, No. 6, 7272--7284 (2020; Zbl 1484.35010) Full Text: DOI OpenURL
Zhou, Jiangrui; Zhou, Rui; Zhu, Shihui Peakon, rational function and periodic solutions for Tzitzeica-Dodd-Bullough type equations. (English) Zbl 07511265 Chaos Solitons Fractals 141, Article ID 110419, 9 p. (2020). MSC: 35-XX 65-XX PDF BibTeX XML Cite \textit{J. Zhou} et al., Chaos Solitons Fractals 141, Article ID 110419, 9 p. (2020; Zbl 07511265) Full Text: DOI OpenURL
El-Ganaini, Shoukry; Kumar, Hitender A variety of new traveling and localized solitary wave solutions of a nonlinear model describing the nonlinear low-pass electrical transmission lines. (English) Zbl 07508286 Chaos Solitons Fractals 140, Article ID 110218, 12 p. (2020). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{S. El-Ganaini} and \textit{H. Kumar}, Chaos Solitons Fractals 140, Article ID 110218, 12 p. (2020; Zbl 07508286) Full Text: DOI OpenURL
Ghanbari, Behzad; Nisar, Kottakkaran Sooppy; Aldhaifallah, Mujahed Abundant solitary wave solutions to an extended nonlinear Schrödinger’s equation with conformable derivative using an efficient integration method. (English) Zbl 1485.35383 Adv. Difference Equ. 2020, Paper No. 328, 25 p. (2020). MSC: 35R11 35Q53 35C08 65N22 PDF BibTeX XML Cite \textit{B. Ghanbari} et al., Adv. Difference Equ. 2020, Paper No. 328, 25 p. (2020; Zbl 1485.35383) Full Text: DOI OpenURL
Hyder, Abd-Allah White noise theory and general improved Kudryashov method for stochastic nonlinear evolution equations with conformable derivatives. (English) Zbl 1482.35251 Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020). MSC: 35R11 35Q53 60H15 26A33 35Q51 37L55 PDF BibTeX XML Cite \textit{A.-A. Hyder}, Adv. Difference Equ. 2020, Paper No. 236, 19 p. (2020; Zbl 1482.35251) Full Text: DOI OpenURL
Koroglu, C. Exact and nonstandard finite difference schemes for the generalized KdV-Burgers equation. (English) Zbl 1482.65144 Adv. Difference Equ. 2020, Paper No. 134, 21 p. (2020). MSC: 65M06 35Q51 35Q53 PDF BibTeX XML Cite \textit{C. Koroglu}, Adv. Difference Equ. 2020, Paper No. 134, 21 p. (2020; Zbl 1482.65144) Full Text: DOI OpenURL
Liu, Bangde; Lin, Guang High-dimensional nonlinear multi-fidelity model with gradient-free active subspace method. (English) Zbl 1477.62094 Commun. Comput. Phys. 28, No. 5, 1937-1969 (2020). MSC: 62G08 60G15 68T05 PDF BibTeX XML Cite \textit{B. Liu} and \textit{G. Lin}, Commun. Comput. Phys. 28, No. 5, 1937--1969 (2020; Zbl 1477.62094) Full Text: DOI OpenURL
Elboree, M. K. Studying lump solutions, rogue wave solutions and dynamical interaction for new model generating from Lax pair. (English) Zbl 1473.35477 Math. Model. Nat. Phenom. 15, Paper No. 67, 14 p. (2020). MSC: 35Q51 35Q53 35C08 37K40 33F10 PDF BibTeX XML Cite \textit{M. K. Elboree}, Math. Model. Nat. Phenom. 15, Paper No. 67, 14 p. (2020; Zbl 1473.35477) Full Text: DOI OpenURL
Wu, Juanjuan; Liu, Yaqing; Piao, Linhua; Zhuang, Jianhong; Wang, Deng-Shan Nonlinear localized waves resonance and interaction solutions of the \((3 + 1)\)-dimensional Boiti-Leon-Manna-Pempinelli equation. (English) Zbl 1459.35084 Nonlinear Dyn. 100, No. 2, 1527-1541 (2020). MSC: 35C08 37K40 PDF BibTeX XML Cite \textit{J. Wu} et al., Nonlinear Dyn. 100, No. 2, 1527--1541 (2020; Zbl 1459.35084) Full Text: DOI OpenURL
Cai, Benzhi; Wang, Zhenli; Zhang, Lihua; Liu, Hanze Lump solutions to the generalized (2+1)-dimensional B-type Kadomtsev-Petviashvili equation. (English) Zbl 1464.35278 J. Appl. Anal. Comput. 10, No. 3, 1038-1046 (2020). MSC: 35Q51 35Q53 37K10 37K40 68W30 PDF BibTeX XML Cite \textit{B. Cai} et al., J. Appl. Anal. Comput. 10, No. 3, 1038--1046 (2020; Zbl 1464.35278) Full Text: DOI OpenURL
Issasfa, Asma; Lin, Ji Lump and mixed rogue-soliton solutions to the 2+1 dimensional Ablowitz-Kaup-Newell-Segur equation. (English) Zbl 1461.35096 J. Appl. Anal. Comput. 10, No. 1, 314-325 (2020). MSC: 35C08 35Q55 35A25 35C07 PDF BibTeX XML Cite \textit{A. Issasfa} and \textit{J. Lin}, J. Appl. Anal. Comput. 10, No. 1, 314--325 (2020; Zbl 1461.35096) Full Text: DOI OpenURL
Ionescu, Carmen; Constantinescu, Radu; Stoicescu, Mihail Functional expansions for finding traveling wave solutions. (English) Zbl 1455.35220 J. Appl. Anal. Comput. 10, No. 2, 569-583 (2020). MSC: 35Q53 35C07 PDF BibTeX XML Cite \textit{C. Ionescu} et al., J. Appl. Anal. Comput. 10, No. 2, 569--583 (2020; Zbl 1455.35220) Full Text: DOI OpenURL
Yang, Huizhang; Liu, Wei; Zhao, Yunmei Lie symmetry analysis, traveling wave solutions, and conservation laws to the \((3+1)\)-dimensional generalized B-type Kadomtsev-Petviashvili equation. (English) Zbl 1456.35071 Complexity 2020, Article ID 3465860, 8 p. (2020). MSC: 35C07 35G25 35B06 PDF BibTeX XML Cite \textit{H. Yang} et al., Complexity 2020, Article ID 3465860, 8 p. (2020; Zbl 1456.35071) Full Text: DOI OpenURL
Khalique, Chaudry Masood; Moleleki, Letlhogonolo Daddy A study of a generalized first extended (3+1)-dimensional Jimbo-Miwa equation. (English) Zbl 1456.35087 Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2789-2802 (2020). MSC: 35G20 35A24 35B06 35C05 70H33 PDF BibTeX XML Cite \textit{C. M. Khalique} and \textit{L. D. Moleleki}, Discrete Contin. Dyn. Syst., Ser. S 13, No. 10, 2789--2802 (2020; Zbl 1456.35087) Full Text: DOI OpenURL
Hu, Hengchun; Liu, Feiyan New interaction solutions and nonlocal symmetry of an equation combining the modified Calogero-Bogoyavlenskii-Schiff equation with its negative-order form. (English) Zbl 1451.35162 Commun. Theor. Phys. 72, No. 6, Article ID 065002, 5 p. (2020). MSC: 35Q53 35C08 35C07 35C10 PDF BibTeX XML Cite \textit{H. Hu} and \textit{F. Liu}, Commun. Theor. Phys. 72, No. 6, Article ID 065002, 5 p. (2020; Zbl 1451.35162) Full Text: DOI OpenURL
Liu, Jian-Guo; Ye, Qing Exact periodic cross-kink wave solutions for the \((2+1)\)-dimensional Korteweg-de Vries equation. (English) Zbl 1452.35062 Anal. Math. Phys. 10, No. 4, Paper No. 54, 9 p. (2020). MSC: 35C08 35B10 35Q55 33F10 68W30 PDF BibTeX XML Cite \textit{J.-G. Liu} and \textit{Q. Ye}, Anal. Math. Phys. 10, No. 4, Paper No. 54, 9 p. (2020; Zbl 1452.35062) Full Text: DOI OpenURL
Wang, Pan; Yang, Jian-Rong; Chen, Li; Li, Sheng-Xin; Qi, Feng-Hua Analytical study on the generalized fifth-order Kaup-Kupershmidt equation from the shallow water wave. (English) Zbl 1451.35176 Comput. Math. Math. Phys. 60, No. 9, 1480-1487 (2020). MSC: 35Q53 76B25 35C05 PDF BibTeX XML Cite \textit{P. Wang} et al., Comput. Math. Math. Phys. 60, No. 9, 1480--1487 (2020; Zbl 1451.35176) Full Text: DOI OpenURL
Ratliff, D. J. Phase dynamics of the Dysthe equation and the bifurcation of plane waves. (English) Zbl 1453.76030 Water Waves 2, No. 1, 123-144 (2020). MSC: 76B25 76E30 35Q53 PDF BibTeX XML Cite \textit{D. J. Ratliff}, Water Waves 2, No. 1, 123--144 (2020; Zbl 1453.76030) Full Text: DOI arXiv OpenURL
Liu, Jian-Guo; Zhu, Wen-Hui; Lei, Zhi-Qiang; Ai, Guo-Ping Double-periodic soliton solutions for the new \((2+1)\)-dimensional KdV equation in fluid flows and plasma physics. (English) Zbl 1447.35107 Anal. Math. Phys. 10, No. 4, Paper No. 41, 19 p. (2020). MSC: 35C08 35Q53 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., Anal. Math. Phys. 10, No. 4, Paper No. 41, 19 p. (2020; Zbl 1447.35107) Full Text: DOI OpenURL
Vatchev, Vesselin Decomposition of 2-soliton solutions for the good Boussinesq equations. (English) Zbl 1441.35097 J. Nonlinear Math. Phys. 27, No. 4, 647-663 (2020). MSC: 35C08 35Q35 35Q53 PDF BibTeX XML Cite \textit{V. Vatchev}, J. Nonlinear Math. Phys. 27, No. 4, 647--663 (2020; Zbl 1441.35097) Full Text: DOI OpenURL
Shen, Wang; Ma, Zheng-Yi; Fei, Jin-Xi; Zhu, Quan-Yong; Chen, Jun-Chao Abundant symmetry-breaking solutions of the nonlocal Alice-Bob Benjamin-Ono system. (English) Zbl 1447.35276 Complexity 2020, Article ID 2370970, 12 p. (2020). MSC: 35Q35 35Q51 76B15 35C08 37K35 37K40 81R40 PDF BibTeX XML Cite \textit{W. Shen} et al., Complexity 2020, Article ID 2370970, 12 p. (2020; Zbl 1447.35276) Full Text: DOI OpenURL
Blas, H.; Ochoa, R.; Suarez, D. Quasi-integrable KdV models, towers of infinite number of anomalous charges and soliton collisions. (English) Zbl 1435.81091 J. High Energy Phys. 2020, No. 3, Paper No. 136, 50 p. (2020). MSC: 81R12 81T50 35Q53 PDF BibTeX XML Cite \textit{H. Blas} et al., J. High Energy Phys. 2020, No. 3, Paper No. 136, 50 p. (2020; Zbl 1435.81091) Full Text: DOI arXiv OpenURL
Wei, Yi; Zhang, Xing-Qiu; Shao, Zhu-Yan; Gu, Lu-Feng; Yang, Xiao-Feng Exact combined solutions for the \((2+1)\)-dimensional dispersive long water-wave equations. (English) Zbl 1440.35280 J. Funct. Spaces 2020, Article ID 3707924, 7 p. (2020). MSC: 35Q35 76B25 35C07 35C08 35B10 PDF BibTeX XML Cite \textit{Y. Wei} et al., J. Funct. Spaces 2020, Article ID 3707924, 7 p. (2020; Zbl 1440.35280) Full Text: DOI OpenURL
Wang, Pan; Li, Yan-Li; Qi, Feng-Hua Interactions of solitons for a generalized nonlinear Schrödinger equation from the inhomogeneous Heisenberg ferromagnetic spin system. (English) Zbl 1440.35032 Appl. Math. Lett. 102, Article ID 106139, 6 p. (2020). MSC: 35C08 35Q55 35R03 PDF BibTeX XML Cite \textit{P. Wang} et al., Appl. Math. Lett. 102, Article ID 106139, 6 p. (2020; Zbl 1440.35032) Full Text: DOI OpenURL
Yang, Xiao-Feng; Wei, Yi Bilinear equation of the nonlinear partial differential equation and its application. (English) Zbl 1439.35018 J. Funct. Spaces 2020, Article ID 4912159, 14 p. (2020). MSC: 35A25 35C05 35G20 35Q53 PDF BibTeX XML Cite \textit{X.-F. Yang} and \textit{Y. Wei}, J. Funct. Spaces 2020, Article ID 4912159, 14 p. (2020; Zbl 1439.35018) Full Text: DOI OpenURL
Wang, Jing; Li, Biao High-order breather solutions, lump solutions, and hybrid solutions of a reduced generalized \((3 + 1)\)-dimensional shallow water wave equation. (English) Zbl 1441.35202 Complexity 2020, Article ID 9052457, 13 p. (2020). MSC: 35Q35 35Q53 76B25 35C08 PDF BibTeX XML Cite \textit{J. Wang} and \textit{B. Li}, Complexity 2020, Article ID 9052457, 13 p. (2020; Zbl 1441.35202) Full Text: DOI OpenURL
Wu, Hong-Yu; Fei, Jin-Xi; Ma, Zheng-Yi; Chen, Jun-Chao; Ma, Wen-Xiu Symmetry breaking soliton, breather, and lump solutions of a nonlocal Kadomtsev-Petviashvili system. (English) Zbl 1441.35017 Complexity 2020, Article ID 6423205, 13 p. (2020). MSC: 35B06 58E09 35Q55 PDF BibTeX XML Cite \textit{H.-Y. Wu} et al., Complexity 2020, Article ID 6423205, 13 p. (2020; Zbl 1441.35017) Full Text: DOI OpenURL
Benia, Yassine; Scapellato, Andrea Existence of solution to Korteweg-de Vries equation in a non-parabolic domain. (English) Zbl 1442.35217 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111758, 12 p. (2020). Reviewer: Boubaker-Khaled Sadallah (Algier) MSC: 35K58 35Q35 PDF BibTeX XML Cite \textit{Y. Benia} and \textit{A. Scapellato}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 195, Article ID 111758, 12 p. (2020; Zbl 1442.35217) Full Text: DOI OpenURL
Nestor, Savaissou; Justin, Mibaile; Douvagai; Betchewe, Gambo; Doka, Serge Y.; Kofane, T. C. New Jacobi elliptic solutions and other solutions with quadratic-cubic nonlinearity using two mathematical methods. (English) Zbl 1439.35017 Asian-Eur. J. Math. 13, No. 2, Article ID 2050043, 10 p. (2020). MSC: 35A24 35C05 PDF BibTeX XML Cite \textit{S. Nestor} et al., Asian-Eur. J. Math. 13, No. 2, Article ID 2050043, 10 p. (2020; Zbl 1439.35017) Full Text: DOI OpenURL
Chen, Yiren New generalized soliton solutions for a \((3 + 1)\)-dimensional equation. (English) Zbl 1435.35113 Adv. Math. Phys. 2020, Article ID 7640717, 4 p. (2020). MSC: 35C08 35G25 35Q53 PDF BibTeX XML Cite \textit{Y. Chen}, Adv. Math. Phys. 2020, Article ID 7640717, 4 p. (2020; Zbl 1435.35113) Full Text: DOI OpenURL
Yu, Xin; Sun, Zhi-Yuan Unconventional characteristic line for the nonautonomous KP equation. (English) Zbl 1425.35177 Appl. Math. Lett. 100, Article ID 106047, 6 p. (2020). MSC: 35Q53 37K10 76B15 37K40 PDF BibTeX XML Cite \textit{X. Yu} and \textit{Z.-Y. Sun}, Appl. Math. Lett. 100, Article ID 106047, 6 p. (2020; Zbl 1425.35177) Full Text: DOI OpenURL
Kadkhoda, Nematollah; Jafari, Hossein An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations. (English) Zbl 07532426 Adv. Difference Equ. 2019, Paper No. 428, 10 p. (2019). MSC: 35R11 26A33 35C05 PDF BibTeX XML Cite \textit{N. Kadkhoda} and \textit{H. Jafari}, Adv. Difference Equ. 2019, Paper No. 428, 10 p. (2019; Zbl 07532426) Full Text: DOI OpenURL
Altschul, Brett Statistical equilibrium of the Korteweg-de Vries and Benjamin-Ono unidirectional soliton models. (English) Zbl 1457.82232 J. Stat. Mech. Theory Exp. 2019, No. 10, Article ID 103209, 16 p. (2019). MSC: 82C22 35Q53 35Q51 37K40 PDF BibTeX XML Cite \textit{B. Altschul}, J. Stat. Mech. Theory Exp. 2019, No. 10, Article ID 103209, 16 p. (2019; Zbl 1457.82232) Full Text: DOI arXiv OpenURL
Wu, Wen-Biao; Lou, Sen-Yue Exact solutions of an Alice-Bob KP equation. (English) Zbl 1452.35177 Commun. Theor. Phys. 71, No. 6, 629-632 (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{W.-B. Wu} and \textit{S.-Y. Lou}, Commun. Theor. Phys. 71, No. 6, 629--632 (2019; Zbl 1452.35177) Full Text: DOI OpenURL
Li, YuQi; Chen, Yong The special class of second integrals of the KdV equation. (English) Zbl 1464.35301 Commun. Nonlinear Sci. Numer. Simul. 70, 193-202 (2019). MSC: 35Q53 34A05 PDF BibTeX XML Cite \textit{Y. Li} and \textit{Y. Chen}, Commun. Nonlinear Sci. Numer. Simul. 70, 193--202 (2019; Zbl 1464.35301) Full Text: DOI OpenURL
Seadawy, Aly R.; Iqbal, Mujahid; Lu, Dianchen Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev-Petviashvili modified equal width dynamical equation. (English) Zbl 1443.35141 Comput. Math. Appl. 78, No. 11, 3620-3632 (2019). MSC: 35Q53 35C08 65J15 PDF BibTeX XML Cite \textit{A. R. Seadawy} et al., Comput. Math. Appl. 78, No. 11, 3620--3632 (2019; Zbl 1443.35141) Full Text: DOI OpenURL
Kumar, Dharmendra; Kumar, Sachin Some new periodic solitary wave solutions of (3+1)-dimensional generalized shallow water wave equation by Lie symmetry approach. (English) Zbl 1442.35380 Comput. Math. Appl. 78, No. 3, 857-877 (2019). MSC: 35Q53 35A30 35B10 35C08 76M60 PDF BibTeX XML Cite \textit{D. Kumar} and \textit{S. Kumar}, Comput. Math. Appl. 78, No. 3, 857--877 (2019; Zbl 1442.35380) Full Text: DOI arXiv OpenURL
Kumar, Sachin; Kumar, Dharmendra Solitary wave solutions of \((3+1)\)-dimensional extended Zakharov-Kuznetsov equation by Lie symmetry approach. (English) Zbl 1442.35382 Comput. Math. Appl. 77, No. 8, 2096-2113 (2019). MSC: 35Q53 35A30 35C08 PDF BibTeX XML Cite \textit{S. Kumar} and \textit{D. Kumar}, Comput. Math. Appl. 77, No. 8, 2096--2113 (2019; Zbl 1442.35382) Full Text: DOI OpenURL
Liu, Xiaoyan; Triki, Houria; Zhou, Qin; Mirzazadeh, Mohammad; Liu, Wenjun; Biswas, Anjan; Belic, Milivoj Generation and control of multiple solitons under the influence of parameters. (English) Zbl 1439.78013 Nonlinear Dyn. 95, No. 1, 143-150 (2019). MSC: 78A60 35C08 35Q55 PDF BibTeX XML Cite \textit{X. Liu} et al., Nonlinear Dyn. 95, No. 1, 143--150 (2019; Zbl 1439.78013) Full Text: DOI OpenURL
Liu, Jian-Guo; Eslami, Mostafa; Rezazadeh, Hadi; Mirzazadeh, Mohammad Rational solutions and lump solutions to a non-isospectral and generalized variable-coefficient Kadomtsev-Petviashvili equation. (English) Zbl 1439.35418 Nonlinear Dyn. 95, No. 2, 1027-1033 (2019). MSC: 35Q51 37K10 35C08 37K40 PDF BibTeX XML Cite \textit{J.-G. Liu} et al., Nonlinear Dyn. 95, No. 2, 1027--1033 (2019; Zbl 1439.35418) Full Text: DOI OpenURL
Yang, Chunyu; Zhou, Qin; Triki, Houria; Mirzazadeh, Mohammad; Ekici, Mehmet; Liu, Wen-Jun; Biswas, Anjan; Belic, Milivoj Bright soliton interactions in a \((2+1)\)-dimensional fourth-order variable-coefficient nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain. (English) Zbl 1439.35451 Nonlinear Dyn. 95, No. 2, 983-994 (2019). MSC: 35Q55 35C08 37K40 PDF BibTeX XML Cite \textit{C. Yang} et al., Nonlinear Dyn. 95, No. 2, 983--994 (2019; Zbl 1439.35451) Full Text: DOI OpenURL
Liu, Xiaoyan; Liu, Wenjun; Triki, Houria; Zhou, Qin; Biswas, Anjan Periodic attenuating oscillation between soliton interactions for higher-order variable coefficient nonlinear Schrödinger equation. (English) Zbl 1437.35146 Nonlinear Dyn. 96, No. 2, 801-809 (2019). MSC: 35C08 35Q55 37K40 PDF BibTeX XML Cite \textit{X. Liu} et al., Nonlinear Dyn. 96, No. 2, 801--809 (2019; Zbl 1437.35146) Full Text: DOI OpenURL
Liu, Jian-Guo; Ye, Qing Stripe solitons and lump solutions for a generalized Kadomtsev-Petviashvili equation with variable coefficients in fluid mechanics. (English) Zbl 1437.35583 Nonlinear Dyn. 96, No. 1, 23-29 (2019). MSC: 35Q35 35C08 37K40 PDF BibTeX XML Cite \textit{J.-G. Liu} and \textit{Q. Ye}, Nonlinear Dyn. 96, No. 1, 23--29 (2019; Zbl 1437.35583) Full Text: DOI OpenURL
Saut, Jean-Claude Benjamin-Ono and intermediate long wave equations: modeling, IST and PDE. (English) Zbl 1442.35355 Miller, Peter D. (ed.) et al., Nonlinear dispersive partial differential equations and inverse scattering. Papers from the focus program on “Nonlinear Dispersive Partial Differential Equations and Inverse Scattering”, Fields Institute, July 31 – August 18, 2017. New York, NY: Springer; Toronto, ON: The Fields Institute for Research in Mathematical Scienes. Fields Inst. Commun. 83, 95-160 (2019). MSC: 35Q35 76B15 37K15 PDF BibTeX XML Cite \textit{J.-C. Saut}, Fields Inst. Commun. 83, 95--160 (2019; Zbl 1442.35355) Full Text: DOI arXiv OpenURL
Redkina, Tatyana V.; Zakinyan, Robert G.; Zakinyan, Arthur R.; Surneva, Olesya B.; Yanovskaya, Olga S. Bäcklund transformations for nonlinear differential equations and systems. (English) Zbl 1432.35187 Axioms 8, No. 2, Paper No. 45, 18 p. (2019). MSC: 35Q53 37K35 37K10 PDF BibTeX XML Cite \textit{T. V. Redkina} et al., Axioms 8, No. 2, Paper No. 45, 18 p. (2019; Zbl 1432.35187) Full Text: DOI OpenURL
Grinevich, P. G.; Santini, P. M. The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes. (English. Russian original) Zbl 1454.35340 Russ. Math. Surv. 74, No. 2, 211-263 (2019); translation from Usp. Mat. Nauk 74, No. 2, 27-80 (2019). MSC: 35Q55 37K10 35C08 74J30 78A60 76B25 76B15 PDF BibTeX XML Cite \textit{P. G. Grinevich} and \textit{P. M. Santini}, Russ. Math. Surv. 74, No. 2, 211--263 (2019; Zbl 1454.35340); translation from Usp. Mat. Nauk 74, No. 2, 27--80 (2019) Full Text: DOI arXiv OpenURL
Liang, Jin-Fu; Wang, Xun Investigation of interaction solutions for modified Korteweg-de Vries equation by consistent Riccati expansion method. (English) Zbl 1435.35337 Math. Probl. Eng. 2019, Article ID 9535294, 8 p. (2019). MSC: 35Q53 35C08 35C05 PDF BibTeX XML Cite \textit{J.-F. Liang} and \textit{X. Wang}, Math. Probl. Eng. 2019, Article ID 9535294, 8 p. (2019; Zbl 1435.35337) Full Text: DOI OpenURL
Bakodah, H. O.; Banaja, M. A.; Alshaery, A. A.; Al Qarni, A. A. Numerical solution of dispersive optical solitons with Schrödinger-Hirota equation by improved Adomian decomposition method. (English) Zbl 1435.35342 Math. Probl. Eng. 2019, Article ID 2960912, 6 p. (2019); corrigendum ibid. 2020, Article ID 8128513, 1 p. (2020). MSC: 35Q55 35C08 35C05 PDF BibTeX XML Cite \textit{H. O. Bakodah} et al., Math. Probl. Eng. 2019, Article ID 2960912, 6 p. (2019; Zbl 1435.35342) Full Text: DOI OpenURL
Yu, Weitian; Liu, Wenjun; Triki, Houria; Zhou, Qin; Biswas, Anjan; Belić, Milivoj R. Control of dark and anti-dark solitons in the \((2+1)\)-dimensional coupled nonlinear Schrödinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system. (English) Zbl 1430.35218 Nonlinear Dyn. 97, No. 1, 471-483 (2019). MSC: 35Q55 35C08 35Q51 37K40 78A60 PDF BibTeX XML Cite \textit{W. Yu} et al., Nonlinear Dyn. 97, No. 1, 471--483 (2019; Zbl 1430.35218) Full Text: DOI OpenURL
Yu, Weitian; Liu, Wenjun; Triki, Houria; Zhou, Qin; Biswas, Anjan Phase shift, oscillation and collision of the anti-dark solitons for the \((3+1)\)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system. (English) Zbl 1430.35217 Nonlinear Dyn. 97, No. 2, 1253-1262 (2019). MSC: 35Q55 35C08 37K40 78A60 PDF BibTeX XML Cite \textit{W. Yu} et al., Nonlinear Dyn. 97, No. 2, 1253--1262 (2019; Zbl 1430.35217) Full Text: DOI OpenURL
Zakeri, Gholam-Ali Dynamics of solitons in high-order nonlinear Schrödinger equations in fiber optics. (English) Zbl 1430.35219 Smith, Frank T. (ed.) et al., Mathematics applied to engineering, modelling, and social issues. Cham: Springer. Stud. Syst. Decis. Control 200, 213-243 (2019). MSC: 35Q55 35Q51 35Q60 PDF BibTeX XML Cite \textit{G.-A. Zakeri}, Stud. Syst. Decis. Control 200, 213--243 (2019; Zbl 1430.35219) Full Text: DOI OpenURL
Chen, Wei-Qin; Guan, Qing-Feng; Jiang, Chao-Fan; Zhang, Fei-Fan; Wang, Lei Nonautonomous motion study on accelerated and decelerated lump waves for a (3 + 1)-dimensional generalized shallow water wave equation with variable coefficients. (English) Zbl 1432.35171 Complexity 2019, Article ID 6287461, 8 p. (2019). MSC: 35Q35 35C05 76B15 PDF BibTeX XML Cite \textit{W.-Q. Chen} et al., Complexity 2019, Article ID 6287461, 8 p. (2019; Zbl 1432.35171) Full Text: DOI OpenURL
Fang, Tao; Wang, Yun-Hu Lump-stripe interaction solutions to the potential Yu-Toda-Sasa-Fukuyama equation. (English) Zbl 1436.37087 Anal. Math. Phys. 9, No. 3, 1481-1495 (2019). MSC: 37K40 35C07 35Q51 PDF BibTeX XML Cite \textit{T. Fang} and \textit{Y.-H. Wang}, Anal. Math. Phys. 9, No. 3, 1481--1495 (2019; Zbl 1436.37087) Full Text: DOI OpenURL
Ghanbari, Behzad; Baleanu, Dumitru; Al Qurashi, Maysaa New exact solutions of the generalized Benjamin-Bona-Mahony equation. (English) Zbl 1423.35340 Symmetry 11, No. 1, Paper No. 20, 12 p. (2019). MSC: 35Q53 35C08 PDF BibTeX XML Cite \textit{B. Ghanbari} et al., Symmetry 11, No. 1, Paper No. 20, 12 p. (2019; Zbl 1423.35340) Full Text: DOI OpenURL
Zhang, Sheng; Wei, Yuanyuan; Xu, Bo Fractional soliton dynamics and spectral transform of time-fractional nonlinear systems: A concrete example. (English) Zbl 1434.35173 Complexity 2019, Article ID 7952871, 9 p. (2019). MSC: 35Q53 35R11 26A33 35C08 33E12 37K15 PDF BibTeX XML Cite \textit{S. Zhang} et al., Complexity 2019, Article ID 7952871, 9 p. (2019; Zbl 1434.35173) Full Text: DOI OpenURL