Silem, Abdselam; Lin, Ji Exact solutions for a variable-coefficients nonisospectral nonlinear Schrödinger equation via Wronskian technique. (English) Zbl 1501.35378 Appl. Math. Lett. 135, Article ID 108397, 9 p. (2023). MSC: 35Q55 35Q41 35C08 37K10 PDF BibTeX XML Cite \textit{A. Silem} and \textit{J. Lin}, Appl. Math. Lett. 135, Article ID 108397, 9 p. (2023; Zbl 1501.35378) Full Text: DOI OpenURL
Li, Xing; Zhang, Da-jun Elliptic soliton solutions: \(\tau\) functions, vertex operators and bilinear identities. (English) Zbl 07572748 J. Nonlinear Sci. 32, No. 5, Paper No. 70, 53 p. (2022). MSC: 37K10 37K40 37K20 35Q51 35C07 35C08 PDF BibTeX XML Cite \textit{X. Li} and \textit{D.-j. Zhang}, J. Nonlinear Sci. 32, No. 5, Paper No. 70, 53 p. (2022; Zbl 07572748) Full Text: DOI arXiv OpenURL
Liu, Shi-min; Wang, Jing; Zhang, Da-jun Solutions to integrable space-time shifted nonlocal equations. (English) Zbl 07538761 Rep. Math. Phys. 89, No. 2, 199-220 (2022). MSC: 35-XX 81-XX PDF BibTeX XML Cite \textit{S.-m. Liu} et al., Rep. Math. Phys. 89, No. 2, 199--220 (2022; Zbl 07538761) Full Text: DOI arXiv OpenURL
Ma, Wen-Xiu \(N\)-soliton solutions and the Hirota conditions in (1 + 1)-dimensions. (English) Zbl 07533159 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 123-133 (2022). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 1, 123--133 (2022; Zbl 07533159) Full Text: DOI OpenURL
Liu, Yong; Wei, Juncheng Classification of finite Morse index solutions to the elliptic sine-Gordon equation in the plane. (English) Zbl 1486.35196 Rev. Mat. Iberoam. 38, No. 2, 355-432 (2022). MSC: 35J61 35B08 PDF BibTeX XML Cite \textit{Y. Liu} and \textit{J. Wei}, Rev. Mat. Iberoam. 38, No. 2, 355--432 (2022; Zbl 1486.35196) Full Text: DOI OpenURL
Zhang, Yujuan; Ma, Ruyun; Xiong, Na; Feng, Bao-Feng Integrable semi-discretization of a modified short wave equation. (English) Zbl 1485.37067 Appl. Math. Lett. 125, Article ID 107739, 8 p. (2022). MSC: 37K60 37K10 37K35 37K40 39A36 39A14 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Appl. Math. Lett. 125, Article ID 107739, 8 p. (2022; Zbl 1485.37067) Full Text: DOI OpenURL
Wang, Jing; Wu, Hua On \((2+1)\)-dimensional mixed AKNS hierarchy. (English) Zbl 1477.35229 Commun. Nonlinear Sci. Numer. Simul. 104, Article ID 106052, 13 p. (2022). MSC: 35Q53 37K10 35C08 PDF BibTeX XML Cite \textit{J. Wang} and \textit{H. Wu}, Commun. Nonlinear Sci. Numer. Simul. 104, Article ID 106052, 13 p. (2022; Zbl 1477.35229) Full Text: DOI OpenURL
Akbar, Yasir; Afsar, Haleem; Al-Mubaddel, Fahad S.; Abu-Hamdeh, Nidal H.; Abusorrah, Abdullah M. On the solitary wave solution of the viscosity capillarity van der Waals \(p\)-system along with Painleve analysis. (English) Zbl 1498.35150 Chaos Solitons Fractals 153, Part 1, Article ID 111495, 12 p. (2021). MSC: 35C08 35Q55 PDF BibTeX XML Cite \textit{Y. Akbar} et al., Chaos Solitons Fractals 153, Part 1, Article ID 111495, 12 p. (2021; Zbl 1498.35150) Full Text: DOI OpenURL
Chai, Xuedong; Zhang, Yufeng; Zhao, Shiyin Application of the \(\bar\partial \)-dressing method to a \((2+1)\)-dimensional equation. (English. Russian original) Zbl 1486.81147 Theor. Math. Phys. 209, No. 3, 1717-1725 (2021); translation from Teor. Mat. Fiz. 209, No. 3, 465-474 (2021). MSC: 81T10 81T15 35J08 35R30 81U40 35C08 35G31 PDF BibTeX XML Cite \textit{X. Chai} et al., Theor. Math. Phys. 209, No. 3, 1717--1725 (2021; Zbl 1486.81147); translation from Teor. Mat. Fiz. 209, No. 3, 465--474 (2021) Full Text: DOI OpenURL
Wang, Haifeng; Zhang, Yufeng \( \bar\partial \)-dressing method for a few \((2+1)\)-dimensional integrable coupling systems. (English. Russian original) Zbl 1482.81040 Theor. Math. Phys. 208, No. 3, 1239-1255 (2021); translation from Teor. Mat. Fiz. 208, No. 3, 452-470 (2021). MSC: 81U40 81U15 81Q80 81T10 PDF BibTeX XML Cite \textit{H. Wang} and \textit{Y. Zhang}, Theor. Math. Phys. 208, No. 3, 1239--1255 (2021; Zbl 1482.81040); translation from Teor. Mat. Fiz. 208, No. 3, 452--470 (2021) Full Text: DOI OpenURL
Ma, Wen-Xiu \(N\)-soliton solution and the Hirota condition of a (2+1)-dimensional combined equation. (English) Zbl 07431516 Math. Comput. Simul. 190, 270-279 (2021). MSC: 35-XX 37-XX PDF BibTeX XML Cite \textit{W.-X. Ma}, Math. Comput. Simul. 190, 270--279 (2021; Zbl 07431516) Full Text: DOI OpenURL
Cho, Aye Aye; Mesfun, Maebel; Zhang, Da-Jun A revisit to the ABS H2 equation. (English) Zbl 1477.35216 SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 093, 19 p. (2021). MSC: 35Q53 37K60 37K10 37K35 PDF BibTeX XML Cite \textit{A. A. Cho} et al., SIGMA, Symmetry Integrability Geom. Methods Appl. 17, Paper 093, 19 p. (2021; Zbl 1477.35216) Full Text: DOI arXiv OpenURL
Ma, Wen-Xiu; Yong, Xuelin; Lü, Xing Soliton solutions to the B-type Kadomtsev-Petviashvili equation under general dispersion relations. (English) Zbl 07425573 Wave Motion 103, Article ID 102719, 7 p. (2021). MSC: 35Q51 35Q53 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Wave Motion 103, Article ID 102719, 7 p. (2021; Zbl 07425573) Full Text: DOI OpenURL
Jia, Yuechen; Lu, Yu; Yu, Miao; Gegen, Hasi \(M\)-breather, lumps, and soliton molecules for the \((2 + 1)\)-dimensional elliptic Toda equation. (English) Zbl 1479.35407 Adv. Math. Phys. 2021, Article ID 5211451, 18 p. (2021). MSC: 35J61 35A01 PDF BibTeX XML Cite \textit{Y. Jia} et al., Adv. Math. Phys. 2021, Article ID 5211451, 18 p. (2021; Zbl 1479.35407) Full Text: DOI OpenURL
Ma, Wen-Xiu \(N\)-soliton solution of a combined pKP-BKP equation. (English) Zbl 1470.35310 J. Geom. Phys. 165, Article ID 104191, 7 p. (2021). MSC: 35Q53 35Q51 37K40 37K10 35C06 PDF BibTeX XML Cite \textit{W.-X. Ma}, J. Geom. Phys. 165, Article ID 104191, 7 p. (2021; Zbl 1470.35310) Full Text: DOI OpenURL
Silem, Abdselam; Wu, Hua; Zhang, Da-jun Discrete rogue waves and blow-up from solitons of a nonisospectral semi-discrete nonlinear Schrödinger equation. (English) Zbl 1462.39004 Appl. Math. Lett. 116, Article ID 107049, 8 p. (2021). MSC: 39A12 39A36 39A14 35Q55 35B44 35C08 PDF BibTeX XML Cite \textit{A. Silem} et al., Appl. Math. Lett. 116, Article ID 107049, 8 p. (2021; Zbl 1462.39004) Full Text: DOI arXiv OpenURL
Li, Bang-Qing Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. (English) Zbl 1453.78003 Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021). MSC: 78A40 78A60 35Q51 35Q55 35C08 37K40 PDF BibTeX XML Cite \textit{B.-Q. Li}, Appl. Math. Lett. 112, Article ID 106822, 8 p. (2021; Zbl 1453.78003) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Two new Painlevé-integrable (2+1) and (3+1)-dimensional KdV equations with constant and time-dependent coefficients. (English) Zbl 1479.35752 Nucl. Phys., B 954, Article ID 115009, 10 p. (2020). MSC: 35Q53 35Q51 35C08 37K10 35A25 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Nucl. Phys., B 954, Article ID 115009, 10 p. (2020; Zbl 1479.35752) Full Text: DOI OpenURL
Wang, Lan; Zhou, Yuqian; Liu, Qian; Zhang, Qiuyan Traveling waves of the (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq equation. (English) Zbl 1464.37075 J. Appl. Anal. Comput. 10, No. 1, 267-281 (2020). MSC: 37K50 35B32 35C07 PDF BibTeX XML Cite \textit{L. Wang} et al., J. Appl. Anal. Comput. 10, No. 1, 267--281 (2020; Zbl 1464.37075) Full Text: DOI OpenURL
Liu, Shimin; Hua, Wu; Zhang, Da-Jun New dynamics of the classical and nonlocal Gross-Pitaevskii equation with a parabolic potential. (English) Zbl 07304320 Rep. Math. Phys. 86, No. 3, 271-292 (2020). MSC: 35-XX 70-XX PDF BibTeX XML Cite \textit{S. Liu} et al., Rep. Math. Phys. 86, No. 3, 271--292 (2020; Zbl 07304320) Full Text: DOI arXiv OpenURL
Zhang, Ning; Xu, Xi-Xiang Positive and negative integrable hierarchies: bi-Hamiltonian structure and Darboux-Bäcklund transformation. (English) Zbl 1459.37057 Math. Probl. Eng. 2020, Article ID 5363952, 15 p. (2020). MSC: 37K10 35Q53 37K60 PDF BibTeX XML Cite \textit{N. Zhang} and \textit{X.-X. Xu}, Math. Probl. Eng. 2020, Article ID 5363952, 15 p. (2020; Zbl 1459.37057) Full Text: DOI OpenURL
Wang, Jing; Wu, Hua; Zhang, Da-jun Solutions of the nonlocal \((2+1)\)-D breaking solitons hierarchy and the negative order AKNS hierarchy. (English) Zbl 1451.35054 Commun. Theor. Phys. 72, No. 4, Article ID 045002, 12 p. (2020). MSC: 35C08 35Q51 37K10 PDF BibTeX XML Cite \textit{J. Wang} et al., Commun. Theor. Phys. 72, No. 4, Article ID 045002, 12 p. (2020; Zbl 1451.35054) Full Text: DOI OpenURL
Guan, Xue; Zhou, Qin; Biswas, Anjan; Kamis Alzahrani, Abdullah; Liu, Wenjun Darboux transformation for a generalized Ablowitz-Kaup-Newell-Segur hierarchy equation. (English) Zbl 1448.37078 Phys. Lett., A 384, No. 18, Article ID 126394, 6 p. (2020). MSC: 37K10 37J35 35C08 PDF BibTeX XML Cite \textit{X. Guan} et al., Phys. Lett., A 384, No. 18, Article ID 126394, 6 p. (2020; Zbl 1448.37078) Full Text: DOI OpenURL
Cui, Chao-jie; Tang, Xiao-yan; Cui, Ya-jun New variable separation solutions and wave interactions for the \((3+1)\)-dimensional Boiti-Leon-Manna-Pempinelli equation. (English) Zbl 1443.37052 Appl. Math. Lett. 102, Article ID 106109, 6 p. (2020). MSC: 37K35 37K40 35Q51 PDF BibTeX XML Cite \textit{C.-j. Cui} et al., Appl. Math. Lett. 102, Article ID 106109, 6 p. (2020; Zbl 1443.37052) Full Text: DOI OpenURL
Hu, Xiaorui; Lin, Shuning; Shen, Shoufeng New interaction solutions to (1+1)-dimensional Ito equation. (English) Zbl 1428.35096 Appl. Math. Lett. 101, Article ID 106071, 7 p. (2020). MSC: 35G25 35C08 68W30 35C05 PDF BibTeX XML Cite \textit{X. Hu} et al., Appl. Math. Lett. 101, Article ID 106071, 7 p. (2020; Zbl 1428.35096) Full Text: DOI OpenURL
Deng, Xiao; Lou, Senyue; Zhang, Dajun Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations. (English) Zbl 1427.35252 Appl. Math. Comput. 332, 477-483 (2018). MSC: 35Q55 35Q51 PDF BibTeX XML Cite \textit{X. Deng} et al., Appl. Math. Comput. 332, 477--483 (2018; Zbl 1427.35252) Full Text: DOI arXiv OpenURL
Wang, Chuanjian; Fang, Hui Bilinear Bäcklund transformations, kink periodic solitary wave and lump wave solutions of the Bogoyavlenskii-Kadomtsev-Petviashvili equation. (English) Zbl 1420.35329 Comput. Math. Appl. 76, No. 1, 1-10 (2018). MSC: 35Q53 35A30 37K40 35C07 35C08 35B10 PDF BibTeX XML Cite \textit{C. Wang} and \textit{H. Fang}, Comput. Math. Appl. 76, No. 1, 1--10 (2018; Zbl 1420.35329) Full Text: DOI OpenURL
Xu, Xi-Xiang; Xu, Meng A family of integrable different-difference equations, its Hamiltonian structure, and Darboux-Bäcklund transformation. (English) Zbl 1417.39062 Discrete Dyn. Nat. Soc. 2018, Article ID 4152917, 11 p. (2018). MSC: 39A30 PDF BibTeX XML Cite \textit{X.-X. Xu} and \textit{M. Xu}, Discrete Dyn. Nat. Soc. 2018, Article ID 4152917, 11 p. (2018; Zbl 1417.39062) Full Text: DOI OpenURL
Zarmi, Yair Soliton-generating \(\tau\)-functions revisited. (English) Zbl 1406.35323 J. Math. Phys. 59, No. 12, 122701, 21 p. (2018). MSC: 35Q51 35Q53 37K40 35C08 37K15 PDF BibTeX XML Cite \textit{Y. Zarmi}, J. Math. Phys. 59, No. 12, 122701, 21 p. (2018; Zbl 1406.35323) Full Text: DOI arXiv OpenURL
Zhu, Junyi; Wang, Linlin; Geng, Xianguo Riemann-Hilbert approach to TD equation with nonzero boundary condition. (English) Zbl 1402.35195 Front. Math. China 13, No. 5, 1245-1265 (2018). MSC: 35P25 35C08 PDF BibTeX XML Cite \textit{J. Zhu} et al., Front. Math. China 13, No. 5, 1245--1265 (2018; Zbl 1402.35195) Full Text: DOI OpenURL
Zhang, Yi; Xu, Yin-Kang; Shi, Yu-Bin Rational solutions for a combined \((3+1)\)-dimensional generalized BKP equation. (English) Zbl 1390.35290 Nonlinear Dyn. 91, No. 2, 1337-1347 (2018). MSC: 35Q35 37K10 35C08 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Nonlinear Dyn. 91, No. 2, 1337--1347 (2018; Zbl 1390.35290) Full Text: DOI OpenURL
Sun, Jianqing; Hu, Xingbiao; Zhang, Yingnan A semi-discrete modified KdV equation. (English) Zbl 1393.35209 J. Math. Phys. 59, No. 4, 043505, 12 p. (2018). Reviewer: Piotr Biler (Wrocław) MSC: 35Q53 39A14 35C08 37K10 37K60 PDF BibTeX XML Cite \textit{J. Sun} et al., J. Math. Phys. 59, No. 4, 043505, 12 p. (2018; Zbl 1393.35209) Full Text: DOI OpenURL
Yu, Jian-Ping; Sun, Yong-Li A direct Bäcklund transformation for a (3+1)-dimensional Kadomtsev-Petviashvili-Boussinesq-like equation. (English) Zbl 1393.37087 Nonlinear Dyn. 90, No. 4, 2263-2268 (2017). MSC: 37K35 35C07 PDF BibTeX XML Cite \textit{J.-P. Yu} and \textit{Y.-L. Sun}, Nonlinear Dyn. 90, No. 4, 2263--2268 (2017; Zbl 1393.37087) Full Text: DOI OpenURL
Li, Bang-Qing; Ma, Yu-Lan; Mo, Li-Po; Fu, Ying-Ying The \(N\)-loop soliton solutions for \((2+1)\)-dimensional Vakhnenko equation. (English) Zbl 1387.35520 Comput. Math. Appl. 74, No. 3, 504-512 (2017). MSC: 35Q51 35C08 35Q83 37K10 PDF BibTeX XML Cite \textit{B.-Q. Li} et al., Comput. Math. Appl. 74, No. 3, 504--512 (2017; Zbl 1387.35520) Full Text: DOI OpenURL
Lan, Zhong-Zhou; Gao, Yi-Tian; Zhao, Chen; Yang, Jin-Wei; Su, Chuan-Qi Solitons, Bäcklund transformation and Lax pair for a variable-coefficient generalized Boussinesq system in the shallow water. (English) Zbl 1366.37136 Waves Random Complex Media 27, No. 2, 255-264 (2017). MSC: 37K40 37K10 76B15 35C08 35Q53 PDF BibTeX XML Cite \textit{Z.-Z. Lan} et al., Waves Random Complex Media 27, No. 2, 255--264 (2017; Zbl 1366.37136) Full Text: DOI OpenURL
Deng, Shufang Bell polynomials to the Kadomtsev-Petviashivili equation with self-consistent sources. (English) Zbl 1488.35479 Adv. Appl. Math. Mech. 8, No. 2, 271-278 (2016). MSC: 35Q53 35A30 PDF BibTeX XML Cite \textit{S. Deng}, Adv. Appl. Math. Mech. 8, No. 2, 271--278 (2016; Zbl 1488.35479) Full Text: DOI OpenURL
Singh, Manjit; Gupta, R. K. Bäcklund transformations, Lax system, conservation laws and multisoliton solutions for Jimbo-Miwa equation with Bell-polynomials. (English) Zbl 1473.35492 Commun. Nonlinear Sci. Numer. Simul. 37, 362-373 (2016). MSC: 35Q53 35A30 35C08 37K40 PDF BibTeX XML Cite \textit{M. Singh} and \textit{R. K. Gupta}, Commun. Nonlinear Sci. Numer. Simul. 37, 362--373 (2016; Zbl 1473.35492) Full Text: DOI OpenURL
Hu, Zhigang; Tao, Xiuli Bilinear Bäcklund transformations and explicit solutions of a \((3+1)\)-dimensional nonlinear equation. (English) Zbl 1419.37068 Adv. Difference Equ. 2016, Paper No. 312, 13 p. (2016). MSC: 37K35 PDF BibTeX XML Cite \textit{Z. Hu} and \textit{X. Tao}, Adv. Difference Equ. 2016, Paper No. 312, 13 p. (2016; Zbl 1419.37068) Full Text: DOI OpenURL
Vakhnenko, V. O.; Parkes, E. J. Approach in theory of nonlinear evolution equations: the Vakhnenko-Parkes equation. (English) Zbl 1455.35217 Adv. Math. Phys. 2016, Article ID 2916582, 39 p. (2016). Reviewer: Solomon Manukure (Austin) MSC: 35Q51 37K15 35C08 37K35 PDF BibTeX XML Cite \textit{V. O. Vakhnenko} and \textit{E. J. Parkes}, Adv. Math. Phys. 2016, Article ID 2916582, 39 p. (2016; Zbl 1455.35217) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Integrable couplings of the generalized Vakhnenko equation: multiple soliton solutions. (English) Zbl 1358.35162 J. Vib. Control 22, No. 4, 915-919 (2016). MSC: 35Q53 35Q60 35Q74 35C05 35C08 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, J. Vib. Control 22, No. 4, 915--919 (2016; Zbl 1358.35162) Full Text: DOI OpenURL
Li, He; Gao, Yi-Tian Bilinear form and two Bäcklund transformations for the \((3+1)\)-dimensional Jimbo-Miwa equation. (English) Zbl 1433.35342 Abstr. Appl. Anal. 2015, Article ID 834521, 5 p. (2015). MSC: 35Q53 35A30 37K35 PDF BibTeX XML Cite \textit{H. Li} and \textit{Y.-T. Gao}, Abstr. Appl. Anal. 2015, Article ID 834521, 5 p. (2015; Zbl 1433.35342) Full Text: DOI OpenURL
Krishnakumar, K.; Tamizhmani, K. M.; Leach, P. G. L. Algebraic solutions of the Hirota bilinear form for the Korteweg-de Vries and Boussinesq equations. (English) Zbl 1352.35147 Indian J. Pure Appl. Math. 46, No. 5, 739-756 (2015). Reviewer: Ahmed Lesfari (El Jadida) MSC: 35Q53 35Q35 PDF BibTeX XML Cite \textit{K. Krishnakumar} et al., Indian J. Pure Appl. Math. 46, No. 5, 739--756 (2015; Zbl 1352.35147) Full Text: DOI OpenURL
Zhang, YingNan; Chang, XiangKe; Hu, Juan; Hu, XingBiao; Tam, Hon-Wah Integrable discretization of soliton equations via bilinear method and Bäcklund transformation. (English) Zbl 1309.37065 Sci. China, Math. 58, No. 2, 279-296 (2015). MSC: 37K10 37J35 37K35 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Sci. China, Math. 58, No. 2, 279--296 (2015; Zbl 1309.37065) Full Text: DOI arXiv OpenURL
Liu, Na; Ding, Feng Lax pair, Bäcklund transformation and conservation laws for the \((2 + 1)\)-dimensional extended shallow water wave equation. (English) Zbl 1391.76072 Comput. Fluids 89, 153-156 (2014). MSC: 76B15 76M60 PDF BibTeX XML Cite \textit{N. Liu} and \textit{F. Ding}, Comput. Fluids 89, 153--156 (2014; Zbl 1391.76072) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Two B-type Kadomtsev-Petviashvili equations of \((2+1)\) and \((3+1)\) dimensions: multiple soliton solutions, rational solutions and periodic solutions. (English) Zbl 1290.35028 Comput. Fluids 86, 357-362 (2013). MSC: 35C05 35C08 35Q53 35B10 76M25 76B25 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Comput. Fluids 86, 357--362 (2013; Zbl 1290.35028) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Couplings of a fifth order nonlinear integrable equation: multiple kink solutions. (English) Zbl 1290.35233 Comput. Fluids 84, 97-99 (2013). MSC: 35Q53 37K10 35A30 76B25 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Comput. Fluids 84, 97--99 (2013; Zbl 1290.35233) Full Text: DOI OpenURL
Ma, Wen-Xiu Bilinear equations and resonant solutions characterized by Bell polynomials. (English) Zbl 1396.35054 Rep. Math. Phys. 72, No. 1, 41-56 (2013). MSC: 35Q53 35A30 35C08 PDF BibTeX XML Cite \textit{W.-X. Ma}, Rep. Math. Phys. 72, No. 1, 41--56 (2013; Zbl 1396.35054) Full Text: DOI OpenURL
Ma, Wen-Xiu Trilinear equations, Bell polynomials, and resonant solutions. (English) Zbl 1276.35131 Front. Math. China 8, No. 5, 1139-1156 (2013). MSC: 35Q51 37K40 PDF BibTeX XML Cite \textit{W.-X. Ma}, Front. Math. China 8, No. 5, 1139--1156 (2013; Zbl 1276.35131) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid A variety of distinct kinds of multiple soliton solutions for a \((3+1)\)-dimensional nonlinear evolution equation. (English) Zbl 06140846 Math. Methods Appl. Sci. 36, No. 3, 349-357 (2013). MSC: 35B25 35Q51 37K10 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Math. Methods Appl. Sci. 36, No. 3, 349--357 (2013; Zbl 06140846) Full Text: DOI OpenURL
Ma, Wen-Xiu; Zhu, Zuonong Solving the \((3+1)\)-dimensional generalized KP and BKP equations by the multiple exp-function algorithm. (English) Zbl 1280.35122 Appl. Math. Comput. 218, No. 24, 11871-11879 (2012). MSC: 35Q51 35Q53 68W30 PDF BibTeX XML Cite \textit{W.-X. Ma} and \textit{Z. Zhu}, Appl. Math. Comput. 218, No. 24, 11871--11879 (2012; Zbl 1280.35122) Full Text: DOI OpenURL
Li, He; Meng, Xiang-Hua; Tian, Bo Bilinear form and soliton solutions for the coupled nonlinear Klein-Gordon equations. (English) Zbl 1260.35206 Int. J. Mod. Phys. B 26, No. 15, Article ID 1250057, 10 p. (2012). MSC: 35Q55 35C08 33E17 PDF BibTeX XML Cite \textit{H. Li} et al., Int. J. Mod. Phys. B 26, No. 15, Article ID 1250057, 10 p. (2012; Zbl 1260.35206) Full Text: DOI OpenURL
Abdeljabbar, Alrazi; Ma, Wenxiu; Yildirim, Ahmet Determinant solutions to a \((3+1)\)-dimensional generalized KP equation with variable coefficients. (English) Zbl 1263.65100 Chin. Ann. Math., Ser. B 33, No. 5, 641-650 (2012). Reviewer: Petr Sváček (Praha) MSC: 65M99 35Q53 37K10 PDF BibTeX XML Cite \textit{A. Abdeljabbar} et al., Chin. Ann. Math., Ser. B 33, No. 5, 641--650 (2012; Zbl 1263.65100) Full Text: DOI OpenURL
Ma, Wen-Xiu; Abdeljabbar, Alrazi A bilinear Bäcklund transformation of a \((3+1)\)-dimensional generalized KP equation. (English) Zbl 1248.37070 Appl. Math. Lett. 25, No. 10, 1500-1504 (2012). MSC: 37K35 37K10 35Q53 PDF BibTeX XML Cite \textit{W.-X. Ma} and \textit{A. Abdeljabbar}, Appl. Math. Lett. 25, No. 10, 1500--1504 (2012; Zbl 1248.37070) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid A study on the \((2 + 1)\)-dimensional and the \((2 + 1)\)-dimensional higher-order Burgers equations. (English) Zbl 1252.35233 Appl. Math. Lett. 25, No. 10, 1495-1499 (2012). MSC: 35Q35 35A22 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Lett. 25, No. 10, 1495--1499 (2012; Zbl 1252.35233) Full Text: DOI OpenURL
Qu, Qi-Xing; Tian, Bo; Liu, Wen-Jun; Wang, Pan; Jiang, Yan Soliton solutions and Bäcklund transformation for the normalized linearly coupled nonlinear wave equations with symbolic computation. (English) Zbl 1248.35177 Appl. Math. Comput. 218, No. 21, 10386-10392 (2012). MSC: 35Q51 35C08 37K35 PDF BibTeX XML Cite \textit{Q.-X. Qu} et al., Appl. Math. Comput. 218, No. 21, 10386--10392 (2012; Zbl 1248.35177) Full Text: DOI OpenURL
Do, Younghae; Jang, Bongsoo Nonlinear Klein-Gordon and Schrödinger equations by the projected differential transform method. (English) Zbl 1246.65235 Abstr. Appl. Anal. 2012, Article ID 150527, 15 p. (2012). MSC: 65N99 35Q55 PDF BibTeX XML Cite \textit{Y. Do} and \textit{B. Jang}, Abstr. Appl. Anal. 2012, Article ID 150527, 15 p. (2012; Zbl 1246.65235) Full Text: DOI OpenURL
Lü, Xing; Tian, Bo; Zhang, Hai-Qiang; Xu, Tao; Li, He Generalized (2 + 1)-dimensional Gardner model: bilinear equations, Bäcklund transformation, Lax representation and interaction mechanisms. (English) Zbl 1247.35107 Nonlinear Dyn. 67, No. 3, 2279-2290 (2012). MSC: 35Q35 35Q86 35A22 76L05 PDF BibTeX XML Cite \textit{X. Lü} et al., Nonlinear Dyn. 67, No. 3, 2279--2290 (2012; Zbl 1247.35107) Full Text: DOI OpenURL
Ma, Wen-Xiu; Zhang, Yi; Tang, Yaning; Tu, Junyi Hirota bilinear equations with linear subspaces of solutions. (English) Zbl 1245.35109 Appl. Math. Comput. 218, No. 13, 7174-7183 (2012). MSC: 35Q53 11D09 35C07 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Appl. Math. Comput. 218, No. 13, 7174--7183 (2012; Zbl 1245.35109) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple-soliton solutions for a \((3 + 1)\)-dimensional generalized KP equation. (English) Zbl 1245.35104 Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 491-495 (2012). MSC: 35Q51 35C08 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 17, No. 2, 491--495 (2012; Zbl 1245.35104) Full Text: DOI OpenURL
Huang, Lin; Zhang, Da-Jun Solutions and Lax pairs based on bilinear Bäcklund transformations of some supersymmetric equations. (English) Zbl 1238.35003 J. Nonlinear Math. Phys. 19, No. 1, 1250005, 14 p. (2012). MSC: 35A22 35Q53 58J72 PDF BibTeX XML Cite \textit{L. Huang} and \textit{D.-J. Zhang}, J. Nonlinear Math. Phys. 19, No. 1, 1250005, 14 p. (2012; Zbl 1238.35003) Full Text: DOI OpenURL
Wang, Jun-Min; Yang, Xiao Quasi-periodic wave solutions for the \((2+1)\)-dimensional generalized Calogero-Bogoyavlenskii-Schiff (CBS) equation. (English) Zbl 1242.35027 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 4, 2256-2261 (2012). MSC: 35B15 35A22 35Q51 37K35 PDF BibTeX XML Cite \textit{J.-M. Wang} and \textit{X. Yang}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75, No. 4, 2256--2261 (2012; Zbl 1242.35027) Full Text: DOI OpenURL
Zhang, Jian-Bing; Zhang, Da-Jun; Shen, Qing Bilinear approach for a symmetry constraint of the modified KdV equation. (English) Zbl 1244.35132 Appl. Math. Comput. 218, No. 8, 4494-4500 (2011). MSC: 35Q53 35Q51 PDF BibTeX XML Cite \textit{J.-B. Zhang} et al., Appl. Math. Comput. 218, No. 8, 4494--4500 (2011; Zbl 1244.35132) Full Text: DOI OpenURL
Wang, Pan; Tian, Bo; Liu, Wen-Jun; Lü, Xing; Jiang, Yan Lax pair, Bäcklund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves. (English) Zbl 1433.35302 Appl. Math. Comput. 218, No. 5, 1726-1734 (2011). MSC: 35Q35 35C08 37K35 PDF BibTeX XML Cite \textit{P. Wang} et al., Appl. Math. Comput. 218, No. 5, 1726--1734 (2011; Zbl 1433.35302) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple soliton solutions for (2 + 1)-dimensional Sawada-Kotera and Caudrey-Dodd-Gibbon equations. (English) Zbl 1219.35215 Math. Methods Appl. Sci. 34, No. 13, 1580-1586 (2011). MSC: 35Q51 35Q53 37K10 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Math. Methods Appl. Sci. 34, No. 13, 1580--1586 (2011; Zbl 1219.35215) Full Text: DOI OpenURL
Ma, Wen-Xiu; Abdeljabbar, Alrazi; Asaad, Magdy Gamil Wronskian and Grammian solutions to a \((3 + 1)\)-dimensional generalized KP equation. (English) Zbl 1225.65098 Appl. Math. Comput. 217, No. 24, 10016-10023 (2011). Reviewer: Nicolae Pop (Baia Mare) MSC: 65M70 37K10 35Q53 PDF BibTeX XML Cite \textit{W.-X. Ma} et al., Appl. Math. Comput. 217, No. 24, 10016--10023 (2011; Zbl 1225.65098) Full Text: DOI OpenURL
Yang, Hongwei; Yin, Baoshu; Dong, Huanhe Frobenius integrable decompositions for high-order nonlinear evolution equations. (English) Zbl 1218.35195 Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 3005-3010 (2011). MSC: 35Q51 35A30 PDF BibTeX XML Cite \textit{H. Yang} et al., Commun. Nonlinear Sci. Numer. Simul. 16, No. 8, 3005--3010 (2011; Zbl 1218.35195) Full Text: DOI OpenURL
Zhang, Yi; Dang, Xiao-lan; Xu, Hong-xian Bäcklund transformations and soliton solutions for the KdV6 equation. (English) Zbl 1214.37048 Appl. Math. Comput. 217, No. 13, 6230-6236 (2011). Reviewer: Boris V. Loginov (Ul’yanovsk) MSC: 37K35 35Q53 PDF BibTeX XML Cite \textit{Y. Zhang} et al., Appl. Math. Comput. 217, No. 13, 6230--6236 (2011; Zbl 1214.37048) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Burgers hierarchy: multiple kink solutions and multiple singular kink solutions. (English) Zbl 1298.35167 J. Franklin Inst. 347, No. 3, 618-626 (2010). MSC: 35Q51 37K40 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, J. Franklin Inst. 347, No. 3, 618--626 (2010; Zbl 1298.35167) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple-soliton solutions of the perturbed KdV equation. (English) Zbl 1222.65134 Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3270-3273 (2010). MSC: 65N99 35Q53 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 11, 3270--3273 (2010; Zbl 1222.65134) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid A study on an integrable system of coupled KdV equations. (English) Zbl 1222.37070 Commun. Nonlinear Sci. Numer. Simul. 15, No. 10, 2846-2850 (2010). MSC: 37K10 35Q53 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 10, 2846--2850 (2010; Zbl 1222.37070) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Completely integrable coupled KdV and coupled KP systems. (English) Zbl 1222.37069 Commun. Nonlinear Sci. Numer. Simul. 15, No. 10, 2828-2835 (2010). MSC: 37K10 35Q40 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 10, 2828--2835 (2010; Zbl 1222.37069) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple soliton solutions for a \((2 + 1)\)-dimensional integrable KdV6 equation. (English) Zbl 1221.35371 Commun. Nonlinear Sci. Numer. Simul. 15, No. 6, 1466-1472 (2010). MSC: 35Q53 37K20 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 15, No. 6, 1466--1472 (2010; Zbl 1221.35371) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Burgers hierarchy in \((2+1)\)-dimensions: multiple kink solutions and multiple singular kink solutions. (English) Zbl 1225.35191 Int. J. Nonlinear Sci. 10, No. 1, 3-11 (2010). MSC: 35Q51 35A22 37K10 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Int. J. Nonlinear Sci. 10, No. 1, 3--11 (2010; Zbl 1225.35191) OpenURL
Qu, Qi-Xing; Tian, Bo; Liu, Wen-Jun; Li, Min; Sun, Kun Painlevé integrability and \(N\)-soliton solution for the variable-coefficient Zakharov-Kuznetsov equation from plasmas. (English) Zbl 1207.35091 Nonlinear Dyn. 62, No. 1-2, 229-235 (2010). MSC: 35C08 82D10 35Q60 37K10 35Q51 PDF BibTeX XML Cite \textit{Q.-X. Qu} et al., Nonlinear Dyn. 62, No. 1--2, 229--235 (2010; Zbl 1207.35091) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple soliton solutions for the Bogoyavlenskii’s generalized breaking soliton equations and its extension form. (English) Zbl 1206.35215 Appl. Math. Comput. 217, No. 8, 4282-4288 (2010). MSC: 35Q51 35C08 35A22 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 217, No. 8, 4282--4288 (2010; Zbl 1206.35215) Full Text: DOI OpenURL
Xue, Yu-Shan; Li, Li-Li; Meng, Xiang-Hua; Xu, Tao; Lü, Xing; Liu, Wen-Jun; Tian, Bo Solitons and localized excitations for the (2+1)-dimensional dispersive long wave system via symbolic computation. (English) Zbl 1209.37091 Int. J. Mod. Phys. B 24, No. 18, 3529-3541 (2010). Reviewer: Feng Xie (Shanghai) MSC: 37K40 68W05 68W30 PDF BibTeX XML Cite \textit{Y.-S. Xue} et al., Int. J. Mod. Phys. B 24, No. 18, 3529--3541 (2010; Zbl 1209.37091) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple kink solutions for M-component Burgers equations in (1+1)-dimensions and (2+1)-dimensions. (English) Zbl 1205.35278 Appl. Math. Comput. 217, No. 7, 3564-3570 (2010). MSC: 35Q53 35A30 35C08 37K05 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 217, No. 7, 3564--3570 (2010; Zbl 1205.35278) Full Text: DOI OpenURL
You, Fucai; Zhang, Jiao; Zhang, Jianbing The \(N\)-soliton solutions of the fifth-order KdV equation under Bargmann constraint. (English) Zbl 1202.35276 Appl. Math. Comput. 217, No. 4, 1321-1333 (2010). MSC: 35Q53 35Q51 35C08 35A24 PDF BibTeX XML Cite \textit{F. You} et al., Appl. Math. Comput. 217, No. 4, 1321--1333 (2010; Zbl 1202.35276) Full Text: DOI OpenURL
Li, Bangqing; Ma, Yulan; Sun, Jianzhi The interaction processes of the \(N\)-soliton solutions for an extended generalization of Vakhnenko equation. (English) Zbl 1195.65139 Appl. Math. Comput. 216, No. 12, 3522-3535 (2010). MSC: 65M70 35Q51 PDF BibTeX XML Cite \textit{B. Li} et al., Appl. Math. Comput. 216, No. 12, 3522--3535 (2010; Zbl 1195.65139) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid \(N\)-soliton solutions for the integrable bidirectional sixth-order Sawada-Kotera equation. (English) Zbl 1192.35156 Appl. Math. Comput. 216, No. 8, 2317-2320 (2010). MSC: 35Q53 35C08 35A30 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 216, No. 8, 2317--2320 (2010; Zbl 1192.35156) Full Text: DOI OpenURL
Xu, Xiao-Ge; Meng, Xiang-Hua; Sun, Fu-Wei; Gao, Yi-Tian Integrable properties for a generalized non-isospectral and variable-coefficient Korteweg-de Vries model. (English) Zbl 1188.37066 Mod. Phys. Lett. B 24, No. 10, 1023-1032 (2010). MSC: 37K10 35Q53 37K35 37K40 82D10 PDF BibTeX XML Cite \textit{X.-G. Xu} et al., Mod. Phys. Lett. B 24, No. 10, 1023--1032 (2010; Zbl 1188.37066) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid; Triki, Houria Multiple soliton solutions for the sixth-order Ramani equation and a coupled Ramani equation. (English) Zbl 1185.35243 Appl. Math. Comput. 216, No. 1, 332-336 (2010). MSC: 35Q53 35Q51 35C08 PDF BibTeX XML Cite \textit{A.-M. Wazwaz} and \textit{H. Triki}, Appl. Math. Comput. 216, No. 1, 332--336 (2010; Zbl 1185.35243) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Four \((2 + 1)\)-dimensional integrable extensions of the Kadomtsev-Petviashvili equation. (English) Zbl 1186.37083 Appl. Math. Comput. 215, No. 10, 3631-3644 (2010). Reviewer: Vladimir Răsvan (Craiova) MSC: 37K10 37K05 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 215, No. 10, 3631--3644 (2010; Zbl 1186.37083) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations. (English) Zbl 1221.35374 Commun. Nonlinear Sci. Numer. Simul. 14, No. 7, 2962-2970 (2009). MSC: 35Q53 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Commun. Nonlinear Sci. Numer. Simul. 14, No. 7, 2962--2970 (2009; Zbl 1221.35374) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid A \((3+1)\)-dimensional nonlinear evolution equation with multiple soliton solutions and multiple singular soliton solutions. (English) Zbl 1179.35278 Appl. Math. Comput. 215, No. 4, 1548-1552 (2009). MSC: 35Q51 35C08 35A30 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 215, No. 4, 1548--1552 (2009; Zbl 1179.35278) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Four \((2+1)\)-dimensional integrable extensions of the KdV equation: multiple-soliton and multiple singular soliton solutions. (English) Zbl 1177.65162 Appl. Math. Comput. 215, No. 4, 1463-1476 (2009). MSC: 65M70 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 215, No. 4, 1463--1476 (2009; Zbl 1177.65162) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple-soliton solutions and multiple-singular soliton solutions for two higher-dimensional shallow water wave equations. (English) Zbl 1173.35704 Appl. Math. Comput. 211, No. 2, 495-501 (2009). MSC: 35Q58 35Q35 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 211, No. 2, 495--501 (2009; Zbl 1173.35704) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid The Cole-Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld-Sokolov-Satsuma-Hirota equation. (English) Zbl 1155.35426 Appl. Math. Comput. 207, No. 1, 248-255 (2009). MSC: 35Q51 35Q53 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 207, No. 1, 248--255 (2009; Zbl 1155.35426) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Two systems of two-component integrable equations: multiple soliton solutions and multiple singular soliton solutions. (English) Zbl 1159.35433 Appl. Math. Comput. 207, No. 2, 397-405 (2009). MSC: 35Q58 35Q51 37K35 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 207, No. 2, 397--405 (2009; Zbl 1159.35433) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid \(N\)-soliton solutions for the combined KdV-CDG equation and the KdV-Lax equation. (English) Zbl 1185.65192 Appl. Math. Comput. 203, No. 1, 402-407 (2008). MSC: 65M70 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 203, No. 1, 402--407 (2008; Zbl 1185.65192) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple-soliton solutions for the ninth-order KdV equation and sixth-order Boussinesq equation. (English) Zbl 1157.65461 Appl. Math. Comput. 203, No. 1, 277-283 (2008). MSC: 65M70 35Q53 37K10 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 203, No. 1, 277--283 (2008; Zbl 1157.65461) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid The integrable KdV6 equations: Multiple soliton solutions and multiple singular soliton solutions. (English) Zbl 1154.65368 Appl. Math. Comput. 204, No. 2, 963-972 (2008). MSC: 65M70 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 204, No. 2, 963--972 (2008; Zbl 1154.65368) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional Burgers equations. (English) Zbl 1154.65367 Appl. Math. Comput. 204, No. 2, 942-948 (2008). MSC: 65M70 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 204, No. 2, 942--948 (2008; Zbl 1154.65367) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple kink solutions and multiple singular kink solutions for the (2 + 1)-dimensional Burgers equations. (English) Zbl 1159.35422 Appl. Math. Comput. 204, No. 2, 817-823 (2008). MSC: 35Q53 35Q51 35C05 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 204, No. 2, 817--823 (2008; Zbl 1159.35422) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Regular soliton solutions and singular soliton solutions for the modified Kadomtsev-Petviashvili equations. (English) Zbl 1159.35421 Appl. Math. Comput. 204, No. 1, 227-232 (2008). MSC: 35Q53 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 204, No. 1, 227--232 (2008; Zbl 1159.35421) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Solitons and singular solitons for the Gardner-KP equation. (English) Zbl 1159.35432 Appl. Math. Comput. 204, No. 1, 162-169 (2008). MSC: 35Q58 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 204, No. 1, 162--169 (2008; Zbl 1159.35432) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Single and multiple-soliton solutions for the \((2+1)\)-dimensional KdV equation. (English) Zbl 1160.35531 Appl. Math. Comput. 204, No. 1, 20-26 (2008). MSC: 35Q53 35Q51 35C05 35A25 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 204, No. 1, 20--26 (2008; Zbl 1160.35531) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple-soliton solutions of two extended model equations for shallow water waves. (English) Zbl 1165.76007 Appl. Math. Comput. 201, No. 1-2, 790-799 (2008). Reviewer: Qian Zuwen (Beijing) MSC: 76B25 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 201, No. 1--2, 790--799 (2008; Zbl 1165.76007) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. (English) Zbl 1143.76018 Appl. Math. Comput. 201, No. 1-2, 489-503 (2008). MSC: 76B25 35Q51 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 201, No. 1--2, 489--503 (2008; Zbl 1143.76018) Full Text: DOI OpenURL
Wazwaz, Abdul-Majid Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation. (English) Zbl 1155.65383 Appl. Math. Comput. 201, No. 1-2, 168-174 (2008). MSC: 65M70 PDF BibTeX XML Cite \textit{A.-M. Wazwaz}, Appl. Math. Comput. 201, No. 1--2, 168--174 (2008; Zbl 1155.65383) Full Text: DOI OpenURL