Abo-Zeid, R. Global behavior and oscillation of a third order difference equation. (English) Zbl 1478.39007 Quaest. Math. 44, No. 9, 1261-1280 (2021). MSC: 39A21 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Quaest. Math. 44, No. 9, 1261--1280 (2021; Zbl 1478.39007) Full Text: DOI OpenURL
Abo-Zeid, R.; Kamal, H. Global behavior of a third order difference equation with quadratic term. (English) Zbl 1462.39010 Bol. Soc. Mat. Mex., III. Ser. 27, No. 1, Paper No. 23, 15 p. (2021). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{H. Kamal}, Bol. Soc. Mat. Mex., III. Ser. 27, No. 1, Paper No. 23, 15 p. (2021; Zbl 1462.39010) Full Text: DOI OpenURL
Abo-Zeid, R. On a rational second order difference equation with quadratic term. (English) Zbl 1454.39021 Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 299-308 (2020). MSC: 39A20 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 27, No. 5, 299--308 (2020; Zbl 1454.39021) Full Text: Link OpenURL
Abo-Zeid, R. Behavior of solutions of a rational third order difference equation. (English) Zbl 1463.39014 J. Appl. Math. Inform. 38, No. 1-2, 1-12 (2020). MSC: 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, J. Appl. Math. Inform. 38, No. 1--2, 1--12 (2020; Zbl 1463.39014) Full Text: DOI OpenURL
Khan, A. Q.; Qureshi, S. M. Global dynamical properties of rational higher-order system of difference equations. (English) Zbl 1459.39002 Discrete Dyn. Nat. Soc. 2020, Article ID 3696874, 15 p. (2020). MSC: 39A05 PDF BibTeX XML Cite \textit{A. Q. Khan} and \textit{S. M. Qureshi}, Discrete Dyn. Nat. Soc. 2020, Article ID 3696874, 15 p. (2020; Zbl 1459.39002) Full Text: DOI OpenURL
Abo-Zeid, Raafat Behavior of solutions of a second order rational difference equation. (English) Zbl 1474.39016 Math. Morav. 23, No. 1, 11-25 (2019). MSC: 39A20 39A22 39A23 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Math. Morav. 23, No. 1, 11--25 (2019; Zbl 1474.39016) Full Text: DOI OpenURL
Qureshi, S. M.; Khan, A. Q. Global dynamics of a \(3 \times 6\) system of difference equations. (English) Zbl 1453.39008 Discrete Dyn. Nat. Soc. 2019, Article ID 9797242, 14 p. (2019). MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{S. M. Qureshi} and \textit{A. Q. Khan}, Discrete Dyn. Nat. Soc. 2019, Article ID 9797242, 14 p. (2019; Zbl 1453.39008) Full Text: DOI OpenURL
Abo-Zeid, R.; Al-Shabi, M. A. Global behavior of a fourth order rational difference equation. (English) Zbl 1447.39007 Thai J. Math. 16, No. 3, 665-674 (2018). MSC: 39A30 39A20 39A22 PDF BibTeX XML Cite \textit{R. Abo-Zeid} and \textit{M. A. Al-Shabi}, Thai J. Math. 16, No. 3, 665--674 (2018; Zbl 1447.39007) Full Text: Link OpenURL
Abo-Zeid, R. Forbidden sets and stability in some rational difference equations. (English) Zbl 1404.39013 J. Difference Equ. Appl. 24, No. 2, 220-239 (2018). Reviewer: Yuming Chen (Waterloo) MSC: 39A30 39A22 39A10 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, J. Difference Equ. Appl. 24, No. 2, 220--239 (2018; Zbl 1404.39013) Full Text: DOI OpenURL
Khan, A. Q.; Qureshi, M. N. Qualitative behavior of two systems of higher-order difference equations. (English) Zbl 1344.39003 Math. Methods Appl. Sci. 39, No. 11, 3058-3074 (2016). MSC: 39A10 40A05 PDF BibTeX XML Cite \textit{A. Q. Khan} and \textit{M. N. Qureshi}, Math. Methods Appl. Sci. 39, No. 11, 3058--3074 (2016; Zbl 1344.39003) Full Text: DOI OpenURL
Khan, A. Q.; Qureshi, M. N. Global dynamics of some systems of rational difference equations. (English) Zbl 1334.39032 J. Egypt. Math. Soc. 24, No. 1, 30-36 (2016). MSC: 39A20 39A22 39A23 39A30 PDF BibTeX XML Cite \textit{A. Q. Khan} and \textit{M. N. Qureshi}, J. Egypt. Math. Soc. 24, No. 1, 30--36 (2016; Zbl 1334.39032) Full Text: DOI OpenURL
Abo-Zeid, R. Global attractivity of a higher-order difference equation. (English) Zbl 1248.39010 Discrete Dyn. Nat. Soc. 2012, Article ID 930410, 11 p. (2012). MSC: 39A21 39A22 39A30 PDF BibTeX XML Cite \textit{R. Abo-Zeid}, Discrete Dyn. Nat. Soc. 2012, Article ID 930410, 11 p. (2012; Zbl 1248.39010) Full Text: DOI OpenURL
Hamza, Alaa E. On the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n-k})/g(x_n,x_{n-1},\dots,x_{n-k+1})\). (English) Zbl 1208.39012 Comput. Math. Appl. 60, No. 7, 2170-2177 (2010). Reviewer: Lothar Berg (Rostock) MSC: 39A20 39A21 39A30 PDF BibTeX XML Cite \textit{A. E. Hamza}, Comput. Math. Appl. 60, No. 7, 2170--2177 (2010; Zbl 1208.39012) Full Text: DOI OpenURL
Saker, S. H. Global stability and oscillation of a discrete annual plants model. (English) Zbl 1207.39023 Abstr. Appl. Anal. 2010, Article ID 156725, 18 p. (2010). MSC: 39A30 39A21 39A12 92D25 PDF BibTeX XML Cite \textit{S. H. Saker}, Abstr. Appl. Anal. 2010, Article ID 156725, 18 p. (2010; Zbl 1207.39023) Full Text: DOI EuDML OpenURL
Hamza, Alaa E.; Barbary, S. G. Attractivity of the recursive sequence \(x_{n+1}=(\alpha-\beta x_n)F(x_{n-1},\dots,x_{n-k})\). (English) Zbl 1187.39023 Math. Comput. Modelling 48, No. 11-12, 1744-1749 (2008). MSC: 39A30 PDF BibTeX XML Cite \textit{A. E. Hamza} and \textit{S. G. Barbary}, Math. Comput. Modelling 48, No. 11--12, 1744--1749 (2008; Zbl 1187.39023) Full Text: DOI OpenURL
Zayed, E. M. E.; Shamardan, A. B.; Nofal, T. A. On the rational recursive sequence \(x_{n+1}=(\alpha - \beta x_{n})/(\gamma - \delta x_{n} - x_{n - k})\). (English) Zbl 1154.39017 Int. J. Math. Math. Sci. 2008, Article ID 391265, 15 p. (2008). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{E. M. E. Zayed} et al., Int. J. Math. Math. Sci. 2008, Article ID 391265, 15 p. (2008; Zbl 1154.39017) Full Text: DOI OpenURL
Dehghan, Mehdi; Jaberi Douraki, Majid; Razzaghi, Mohsen Global behavior of the difference equation \(x_{n+1} = \frac {x_{n-l+1}}{1+a_0x_n+a_1x_{n-1}+\cdots + a_lx_{n-l}+x_{n-l+1}}\). (English) Zbl 1138.39004 Chaos Solitons Fractals 35, No. 3, 543-549 (2008). Reviewer: Iryna Grytsay (Kyiv) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{M. Dehghan} et al., Chaos Solitons Fractals 35, No. 3, 543--549 (2008; Zbl 1138.39004) Full Text: DOI OpenURL
Zhang, Lijie; Zhang, Guang; Liu, Hui Periodicity and attractivity for a rational recursive sequence. (English) Zbl 1083.39015 J. Appl. Math. Comput. 19, No. 1-2, 191-201 (2005). Reviewer: Lothar Berg (Rostock) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{L. Zhang} et al., J. Appl. Math. Comput. 19, No. 1--2, 191--201 (2005; Zbl 1083.39015) Full Text: DOI OpenURL
Jaberi Douraki, M.; Dehghan, M.; Razavi, A. On the global behavior of higher order recursive sequences. (English) Zbl 1127.39016 Appl. Math. Comput. 169, No. 2, 819-831 (2005). MSC: 39A11 PDF BibTeX XML Cite \textit{M. Jaberi Douraki} et al., Appl. Math. Comput. 169, No. 2, 819--831 (2005; Zbl 1127.39016) Full Text: DOI OpenURL
Su, You-Hui; Li, Wan-Tong Global asymptotic stability of a second-order nonlinear difference equation. (English) Zbl 1098.39005 Appl. Math. Comput. 168, No. 2, 981-989 (2005). Reviewer: Qingkai Kong (DeKalb) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{Y.-H. Su} and \textit{W.-T. Li}, Appl. Math. Comput. 168, No. 2, 981--989 (2005; Zbl 1098.39005) Full Text: DOI OpenURL
Li, Wantong; Sun, Hongrui Dynamics of a rational difference equation. (English) Zbl 1071.39009 Appl. Math. Comput. 163, No. 2, 577-591 (2005). Reviewer: Fozi Dannan (Damascus) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{W. Li} and \textit{H. Sun}, Appl. Math. Comput. 163, No. 2, 577--591 (2005; Zbl 1071.39009) Full Text: DOI OpenURL
He, Wansheng; Li, Wantong; Yan, Xinxue Global attractivity of the difference equation \(x_{n+1}=\alpha+(x_{n-k}/x_{n})\). (English) Zbl 1056.39021 Appl. Math. Comput. 151, No. 3, 879-885 (2004). Reviewer: Akira Tsutsumi (Suita) MSC: 39A12 39A10 39A11 PDF BibTeX XML Cite \textit{W. He} et al., Appl. Math. Comput. 151, No. 3, 879--885 (2004; Zbl 1056.39021) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong Global attractivity for a class of higher order nonlinear difference equations. (English) Zbl 1040.39009 Appl. Math. Comput. 149, No. 2, 533-546 (2004). Reviewer: Nguyen Van Minh (Harrisonburg) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 149, No. 2, 533--546 (2004; Zbl 1040.39009) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong Global attractivity in a rational recursive sequence. (English) Zbl 1044.39013 Appl. Math. Comput. 145, No. 1, 1-12 (2003). Reviewer: Patricia J. Y. Wong (Singapore) MSC: 39A11 39A20 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 145, No. 1, 1--12 (2003; Zbl 1044.39013) Full Text: DOI OpenURL
Yan, Xing-Xue; Li, Wan-Tong Global attractivity in the recursive sequence \(x_{n+1}=(\alpha-\beta x_{n})/(\gamma-x_{n-1})\). (English) Zbl 1030.39024 Appl. Math. Comput. 138, No. 2-3, 415-423 (2003). Reviewer: Vladimir Răsvan (Craiova) MSC: 39A12 39B05 37D45 PDF BibTeX XML Cite \textit{X.-X. Yan} and \textit{W.-T. Li}, Appl. Math. Comput. 138, No. 2--3, 415--423 (2003; Zbl 1030.39024) Full Text: DOI OpenURL
Aboutaleb, Mona T.; El-Sayed, M. A.; Hamza, Alaa E. Stability of the recursive sequence \(x_{n+1}=(\alpha-\beta x_n)/(\gamma+x_{n-1})\). (English) Zbl 0990.39009 J. Math. Anal. Appl. 261, No. 1, 126-133 (2001). Reviewer: Dobiesław Bobrowski (Poznań) MSC: 39A11 39B05 PDF BibTeX XML Cite \textit{M. T. Aboutaleb} et al., J. Math. Anal. Appl. 261, No. 1, 126--133 (2001; Zbl 0990.39009) Full Text: DOI OpenURL