##
**Robust tracking control for switched fuzzy systems with fast switching controller.**
*(English)*
Zbl 1264.93139

Summary: We address the problem of designing robust tracking controls for a class of switched fuzzy (SF) systems with time delay. A switched fuzzy system, which differs from existing ones, is firstly employed to describe a nonlinear system. Next, a fast switching controller consisting of a number of simple subcontrollers is proposed. The smooth transition is governed by using the fast switching controller. Tracking hybrid control schemes which are based upon a combination of the \(H_{\infty }\) tracking theory, fast switching control algorithm, and switching law design are developed such that the \(H_{\infty }\) model referent tracking performance is guaranteed. Since convex combination techniques are used to derive the delay independent criteria, some subsystems are allowed to be unstable. Finally, various comparisons of the elaborated examples are conducted to demonstrate the effectiveness of the proposed control design approach. All results illustrate good control performances as desired.

### MSC:

93C42 | Fuzzy control/observation systems |

93B51 | Design techniques (robust design, computer-aided design, etc.) |

PDFBibTeX
XMLCite

\textit{H. Yang} et al., Math. Probl. Eng. 2012, Article ID 872826, 21 p. (2012; Zbl 1264.93139)

Full Text:
DOI

### References:

[1] | D. Z. Cheng, L. Guo, Y. D. Lin, and Y. Wang, “Stabilization of switched linear systems,” IEEE Transactions on Automatic Control, vol. 50, no. 5, pp. 661-666, 2005. · Zbl 1365.93389 · doi:10.1109/TAC.2005.846594 |

[2] | J. Zhao and G. M. Dimirovski, “Quadratic stability of a class of switched nonlinear systems,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp. 574-578, 2004. · Zbl 1365.93382 · doi:10.1109/TAC.2004.825611 |

[3] | G. M. Xie and L. Wang, “Necessary and sufficient conditions for controllability and observability of switched impulsive control systems,” IEEE Transactions on Automatic Control, vol. 49, no. 6, pp. 960-966, 2004. · Zbl 1365.93049 · doi:10.1109/TAC.2004.829656 |

[4] | J. Liu, X. Z. Liu, and W. C. Xie, “Input-to-state stability of impulsive and switching hybrid systems with time-delay,” Automatica, vol. 47, no. 5, pp. 899-908, 2011. · Zbl 1233.93083 · doi:10.1016/j.automatica.2011.01.061 |

[5] | R. Wang, G. P. Liu, W. Wang, D. Rees, and Y. B. Zhao, “H\infty control for networked predictive control systems based on the switched Lyapunov function method,” IEEE Transactions on Industrial Electronics, vol. 57, no. 10, pp. 3565-3571, 2010. · doi:10.1109/TIE.2009.2038341 |

[6] | M. Wicks, P. Peleties, and R. Decarlo, “Switched controller synthesis for the quadratic stabilisation of a pair of unstable linear systems,” European Journal of Control, vol. 4, no. 2, pp. 140-147, 1998. · Zbl 0910.93062 · doi:10.1016/S0947-3580(98)70108-6 |

[7] | L. Dugard and E. L. Verrist, Stability and Control of Time-Delay Systems, Springer, New York, NY, USA, 1998. |

[8] | E. Fridman and U. Shaked, “A descriptor system approach to H\infty control of linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 253-270, 2002. · Zbl 1364.93209 · doi:10.1109/9.983353 |

[9] | Q. L. Han and K. Gu, “On robust stability of time-delay systems with norm-bounded uncertainty,” IEEE Transactions on Automatic Control, vol. 46, no. 9, pp. 1426-1431, 2001. · Zbl 1006.93054 · doi:10.1109/9.948471 |

[10] | Y. He, M. Wu, J. H. She, and G. P. Liu, “Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties,” IEEE Transactions on Automatic Control, vol. 49, no. 5, pp. 828-832, 2004. · Zbl 1365.93368 · doi:10.1109/TAC.2004.828317 |

[11] | J. P. Richard, “Time-delay systems: an overview of some recent advances and open problems,” Automatica, vol. 39, no. 10, pp. 1667-1694, 2003. · Zbl 1145.93302 · doi:10.1016/S0005-1098(03)00167-5 |

[12] | S. Kim, S. A. Campbell, and X. Liu, “Stability of a class of linear switching systems with time delay,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 2, pp. 384-393, 2006. · Zbl 1374.94950 · doi:10.1109/TCSI.2005.856666 |

[13] | X. M. Sun, J. Zhao, and D. J. Hill, “Stability and L2-gain analysis for switched delay systems: a delay-dependent method,” Automatica, vol. 42, no. 10, pp. 1769-1774, 2006. · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007 |

[14] | D. Xie and X. Chen, “Observer-based switched control design for switched linear systems with time delay in detection of switching signal,” IET Control Theory and Applications, vol. 2, no. 5, pp. 437-445, 2008. · doi:10.1049/iet-cta:20070212 |

[15] | G. Xie and L. Wang, “Stabilization of switched linear systems with time-delay in detection of switching signal,” Journal of Mathematical Analysis and Applications, vol. 305, no. 1, pp. 277-290, 2005. · Zbl 1140.93463 · doi:10.1016/j.jmaa.2004.11.043 |

[16] | D. S. Du, B. Jiang, P. Shi, and S. S. Zhou, “H\infty filtering of discrete-time switched systems with state delays via switched Lyapunov function approach,” IEEE Transactions on Automatic Control, vol. 52, no. 8, pp. 1520-1525, 2007. · Zbl 1366.93652 · doi:10.1109/TAC.2007.902777 |

[17] | Q. K. Li, J. Zhao, and G. M. Dimirovski, “Robust tracking control for switched linear systems with time-varying delays,” IET Control Theory and Applications, vol. 2, no. 6, pp. 449-457, 2008. · doi:10.1049/iet-cta:20070344 |

[18] | H. K. Lam and F. H. F. Leung, “Fuzzy rule-based combination of linear and switching state-feedback controllers,” Fuzzy Sets and Systems, vol. 156, no. 2, pp. 153-184, 2005. · Zbl 1082.93027 · doi:10.1016/j.fss.2005.05.021 |

[19] | W. J. Wang and C. H. Sun, “Relaxed stability and stabilization conditions for a T-S fuzzy discrete system,” Fuzzy Sets and Systems, vol. 156, no. 2, pp. 208-225, 2005. · Zbl 1082.93035 · doi:10.1016/j.fss.2005.05.002 |

[20] | R. Palm and D. Driankov, “Fuzzy switched hybrid systems-modeling and identification,” in Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), Intelligent Systems and Semiotics (ISAS), and Intelligent Control (ISIC), pp. 130-135, September 1998. · Zbl 0952.93081 |

[21] | K. Tanaka, M. Iwasaki, and H. O. Wang, “Switching control of an R/C hovercraft: stabilization and smooth switching,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 31, no. 6, pp. 853-863, 2001. · doi:10.1109/3477.969489 |

[22] | K. Tanaka, M. Iwasaki, and H. O. Wang, “Stability and smoothness conditions for switching fuzzy systems,” in Proceedings of the American Control Conference, pp. 2474-2478, June 2000. |

[23] | K. Tanaka, M. Iwasaki, and H. O. Wang, “Stable switching fuzzy control and its application to a Hovercraft type vehicle,” in Proceedings of the 9th IEEE International Conference on Fuzzy Systems, pp. 804-809, May 2000. |

[24] | W. J. Wang, Y. J. Chen, and C. H. Sun, “Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 37, no. 3, pp. 551-559, 2007. · doi:10.1109/TSMCB.2006.887434 |

[25] | D. J. Choi, S. S. Lee, and P. Park, “Output-feedback H\infty control of discrete-time switching fuzzy systems,” in Proceedings of the 12th IEEE International Conference on Fuzzy Systems (FUZZ ’03), vol. 1, pp. 441-446, May 2003. |

[26] | D. J. Choi and P. Park, “Guaranteed cost controller design for discrete-time switching fuzzy systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 34, no. 1, pp. 110-119, 2004. · doi:10.1109/TSMCB.2003.809172 |

[27] | H. Yang, H. Liu, G. M. Dimirovski, and J. Zhao, “Stabilization control for a class of switched fuzzy discrete-time systems,” in Proceedings of IEEE International Conference on Fuzzy Systems, pp. 1345-1350, July 2007. · doi:10.1109/FUZZY.2007.4295562 |

[28] | Y. M. Li, Y. Yang, and L. Li, “Adaptive backstepping fuzzy control based on type 2- fuzzy system,” Journal of Applied Mathematics, vol. 2012, Article ID 658424, 27 pages, 2012. · Zbl 1244.93084 · doi:10.1155/2012/658424 |

[29] | A. V. Savkin and A. S. Matveev, “Cyclic linear differential automata: a simple class of hybrid dynamical systems,” Automatica, vol. 36, no. 5, pp. 727-734, 2000. · Zbl 0986.93043 · doi:10.1016/S0005-1098(99)00199-5 |

[30] | M. Sugeno, M. F. Griffin, and A. Bastian, “Fuzzy hierarchical control of an unmanned helicopter,” in Proceedings of the 5th International Fuzzy Systems and Applications Conference (IFSA ’93), pp. 1262-1265, July 1993. |

[31] | Q. K. Li, J. Zhao, G. M. Dimirovski, and X. J. Liu, “Tracking control for switched linear systems with time-delay: a state-dependent switching method,” Asian Journal of Control, vol. 11, no. 5, pp. 517-526, 2009. · doi:10.1002/asjc.132 |

[32] | B. Chen, M. Wang, X. P. Liu, and P. Shi, “Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems,” Fuzzy Sets and Systems, vol. 159, no. 8, pp. 949-967, 2008. · Zbl 1170.93349 · doi:10.1016/j.fss.2007.12.022 |

[33] | P. Liu and T. S. Chiang, “H\infty output tracking fuzzy control for nonlinear systems with time-varying delay,” Applied Soft Computing, vol. 12, no. 9, pp. 2963-2972, 2012. · doi:10.1016/j.asoc.2012.04.025 |

[34] | T. S. Chiang and P. Liu, “Robust output tracking control for discrete-time nonlinear systems with time-varying delay: virtual fuzzy model LMI-based approach,” Expert Systems with Applications, vol. 39, no. 9, pp. 8239-8247, 2012. · doi:10.1016/j.eswa.2012.01.163 |

[35] | L. Zhang, H. Yang, and Y. W. Jing, “Adaptive robust tracking control for a class of uncertain switched fuzzy systems,” Journal of Northeastern University, vol. 29, no. 8, pp. 1073-1076, 2008. · Zbl 1199.93159 |

[36] | Y. Liu, G. M. Dimirovski, and J. Zhao, “Robust output feedback control for a class of uncertain switching fuzzy systems,” in Proceedings of the 17th IFAC World Congress (IFAC ’08), pp. 4773-4778, July 2008. · doi:10.3182/20080706-5-KR-1001.2011 |

[37] | S. C. Tong, T. Wang, and H. X. Li, “Fuzzy robust tracking control for uncertain nonlinear systems,” International Journal of Approximate Reasoning, vol. 30, no. 2, pp. 73-90, 2002. · Zbl 1008.93050 · doi:10.1016/S0888-613X(02)00061-0 |

[38] | H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996. · doi:10.1109/91.481841 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.