×

In praise (and search) of J. V. Uspensky. (English) Zbl 07654783

Summary: The two of us have shared a fascination with James Victor Uspensky’s 1937 textbook Introduction to Mathematical Probability ever since our graduate student days: it contains many interesting results not found in other books on the same subject in the English language, together with many non-trivial examples, all clearly stated with careful proofs. We present some of Uspensky’s gems to a modern audience hoping to tempt others to read Uspensky for themselves, as well as report on a few of the other mathematical topics he also wrote about (e.g., his book on number theory contains early results about perfect shuffles).
Uspensky led an interesting life: a member of the Russian Academy of Sciences, he spoke at the 1924 International Congress of Mathematicians in Toronto before leaving Russia in 1929 and coming to the US and Stanford. Comparatively little has been written about him in English; the second half of this paper attempts to remedy this.

MSC:

62-XX Statistics

Biographic References:

Uspensky, J. V.

References:

[1] ALEXANDERSON, G. L. (2011). Harold M. Bacon. In Fascinating Mathematical People: Interviews and Memoirs (D. J. Albers and G. L. Alexanderson, eds.) Chapter 3. Princeton Univ. Press, Princeton, NJ. · Zbl 1225.01051
[2] BAHADUR, R. R. (1960). Some approximations to the binomial distribution function. Ann. Math. Stat. 31 43-54. · Zbl 0092.35203 · doi:10.1214/aoms/1177705986
[3] BAHADUR, R. R. (1966). A note on quantiles in large samples. Ann. Math. Stat. 37 577-580. · Zbl 0147.18805 · doi:10.1214/aoms/1177699450
[4] BEATTY, S. (1926). Problem 3173. Amer. Math. Monthly 33 159.
[5] BEATTY, S., OSTROWSKI, A., HYSLOP, J. and AITKEN, A. C. (1927). Problems and Solutions: Solutions: 3177. Amer. Math. Monthly 34 159-160. · JFM 53.0198.06 · doi:10.2307/2298716
[6] BELL, E. T. (1951). Hans Frederick Blichfeldt 1873-1945. In Biographical Memoirs 26 181-189. National Academy of Science, Washington, DC.
[7] BENNETT, G. (1962). Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc. 57 33-45. · Zbl 0104.11905
[8] BERNOULLI, J. (1913). Ars Conjectandi, Part 4. Imp. Akaemiya Nauk, St. Petersburg. Translated from the Latin by Ya. V. Uspenskii, with an introduction by A. A. Markov. Reprinted 1986, with additional notes by Yu. V. Prokhorov.
[9] BERNSTEIN, S. N. (1924). On a variant of Chebyshev’s inequality and on the accuracy of Laplace’s formula (in Russian). Uč. Zap. Nauchn.-Issled. Kafedr Ukrainy, Otd. Mat. 1 38-48.
[10] BERTRAND, J. (1888). Calcul des Probabilités. Gauthier-Villars, Paris. Reprinted 1889, 1907. Reprinted, 1972 by Chelsea, New York.
[11] BHATIA, R. (2008). A conversation with S. R. S. Varadhan. Math. Intelligencer 30 24-42. · Zbl 1179.01036 · doi:10.1007/BF02985734
[12] BLACKWELL, D. (1954). On optimal systems. Ann. Math. Stat. 25 394-397. · Zbl 0055.37002 · doi:10.1214/aoms/1177728798
[13] BLICHFELDT, H. F. (1900). On a certain class of groups of transformation in space of three dimensions. Amer. J. Math. 22 113-120. · JFM 31.0146.03 · doi:10.2307/2369749
[14] BOHR, H. and MOLLERUP, J. (1922). Laerebog i Matematisk Analyse 3. In Danish.
[15] BORWEIN, J. M., CHOI, K.-K. S. and PIGULLA, W. (2005). Continued fractions of tails of hypergeometric series. Amer. Math. Monthly 112 493-501. · Zbl 1128.33002 · doi:10.2307/30037519
[16] BURNSIDE, W. (1928). Theory of Probability. Cambridge Univ. Press, Cambridge. 2nd ed., 1936. · JFM 54.0541.01
[17] BUTTER, F. A. JR. (1945). Recent Publications: Aircraft Analytic Geometry. Amer. Math. Monthly 52 338-340. · doi:10.2307/2305297
[18] CASSELS, J. W. S. and VAUGHAN, R. C. (1985). Obituary: Ivan Matveevich Vinogradov. Bull. Lond. Math. Soc. 17 584-600. · Zbl 0578.01029 · doi:10.1112/blms/17.6.584
[19] CHAMBERLAIN, L. (2006). Lenin’s Private War. St. Martin’s Press, New York.
[20] COCHRAN, W. G. (1952). The \[{\chi^2}\] test of goodness of fit. Ann. Math. Stat. 23 315-345. · Zbl 0047.13105 · doi:10.1214/aoms/1177729380
[21] COOLIDGE, J. L. (1925). An Introduction to Mathematical Probability. Clarendon Press, Oxford. · JFM 51.0380.01
[22] CRAIG, C. C. (1933). On the Tchebychef inequality of Bernstein. Ann. Math. Stat. 4 94-102. · Zbl 0007.02303
[23] CRAMÉR, H. (1976). Half a century with probability theory: Some personal recollections. Ann. Probab. 4 509-546. · Zbl 0351.60001 · doi:10.1214/aop/1176996025
[24] DAVID, F. N. (1938). Review of introduction to mathematical probability by J. V. Uspensky. Biometrika 30 194-195.
[25] DE MOIVRE, A. (1967). The Doctrine of Chances: A Method of Calculating the Probabilities of Events in Play. Chelsea Publishing Co., New York. · Zbl 0153.30801
[26] DEHEUVELS, P. and PFEIFER, D. (1988). On a relationship between Uspensky’s theorem and Poisson approximations. Ann. Inst. Statist. Math. 40 671-681. · Zbl 0675.60027 · doi:10.1007/BF00049425
[27] DEMIDOV, S. S. (2015). World War I and mathematics in “the Russian world”. Czas. Tech. 112 77-92.
[28] DESALVO, S. (2021). Will the real Hardy-Ramanujan formula please stand up? Integers 21 A88. · Zbl 1483.11230
[29] DEWITT, N. (1961). Education and Professional Employment in the U.S.S.R. National Science Foundation, Washington, DC.
[30] DIACONIS, P. and GRAHAM, R. (2012). Magical Mathematics: The Mathematical Ideas That Animate Great Magic Tricks. Princeton Univ. Press, Princeton, NJ. · Zbl 1230.00009
[31] DIACONIS, P., GRAHAM, R. L. and KANTOR, W. M. (1983). The mathematics of perfect shuffles. Adv. in Appl. Math. 4 175-196. · Zbl 0521.05005 · doi:10.1016/0196-8858(83)90009-X
[32] DIACONIS, P. and ZABELL, S. (1991). Closed form summation for classical distributions: Variations on a theme of de Moivre. Statist. Sci. 6 284-302. · Zbl 0955.60500
[33] DICKSON, L. E. (1947). Hans Frederik Blichfeldt: 1873-1945. Bull. Amer. Math. Soc. 53 882-883. · Zbl 0031.09905
[34] DUDLEY, R. M. (1987). Some inequalities for continued fractions. Math. Comp. 49 585-593. · Zbl 0634.30005 · doi:10.2307/2008331
[35] DUTKA, J. (1981). The incomplete beta function—a historical profile. Arch. Hist. Exact Sci. 24 11-29. · Zbl 0465.01002 · doi:10.1007/BF00327713
[36] DWYER, W. A. (1937). On Certain Fundamental Identities Due to Uspensky. Amer. J. Math. 59 290-294. · Zbl 0016.24801 · doi:10.2307/2371411
[37] ERMOLAEVA, N. (1997). Uspensky, Yakov Viktorovich. In Russian Diaspora: The Golden Book of Emigration, the First Third of the 20th Century, an Encyclopedic Biographical Dictionary (V. V. Shelokhaeva and N. I. Kanishcheva, eds.) ROSSPEN, Moscow.
[38] ETHIER, S. N. (2010). The Doctrine of Chances. Probability and Its Applications (New York). Springer, Berlin. · Zbl 1198.60001 · doi:10.1007/978-3-540-78783-9
[39] ETHIER, S. N. and KHOSHNEVISAN, D. (2002). Bounds on gambler’s ruin probabilities in terms of moments. Methodol. Comput. Appl. Probab. 4 55-68. · Zbl 0997.60042 · doi:10.1023/A:1015705430513
[40] FELLER, W. (1950). An Introduction to Probability Theory and Its Applications. Wiley, New York. 2nd ed. 1957, 3rd ed. 1968. · Zbl 0039.13201
[41] FINKEL, S. (2003). Purging the public intellectual: The 1922 expulsions from Soviet Russia. Russ. Rev. 62 589-613.
[42] FISHER, A. (1922). The Mathematical Theory of Probabilities & Its Application to Frequency Curves & Statistical Methods. Macmillan, New York. 1st ed., 1915. · JFM 45.1271.03
[43] FISHER, R. A. (1925). Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh. 14th (posthumous) ed., 1970, Hafner, New York. · JFM 51.0414.08
[44] FORSYTH, C. H. (1925). Simple derivations of the formulas for the dispersion of a statistical series. Amer. Math. Monthly 31 190-196. · JFM 50.0351.04
[45] FRY, T. C. (1965). Probability and Its Engineering Uses, 2nd ed. D. Van Nostrand Co., Princeton, NJ-Toronto-London.
[46] GILLILAND, D., LEVENTAL, S. and XIAO, Y. (2007). A note on absorption probabilities in one-dimensional random walk via complex-valued martingales. Statist. Probab. Lett. 77 1098-1105. · Zbl 1138.60036 · doi:10.1016/j.spl.2007.01.016
[47] GRAHAM, R. L. (1963). On a theorem of Uspensky. Amer. Math. Monthly 70 407-409. · Zbl 0113.27101 · doi:10.2307/2311859
[48] GRAHAM, R. L., LIN, S. and LIN, C. S. (1978). Spectra of numbers. Math. Mag. 51 174-176. · Zbl 0391.10003 · doi:10.2307/2689998
[49] GRAHAM, R. and O’BRYANT, K. (2005). A discrete Fourier kernel and Fraenkel’s tiling conjecture. Acta Arith. 118 283-304. · Zbl 1102.11008 · doi:10.4064/aa118-3-4
[50] HALD, A. (1990). A History of Probability and Statistics and Their Applications Before 1750. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. · Zbl 0731.01001 · doi:10.1002/0471725161
[51] HALD, A. (1998). A History of Mathematical Statistics from 1750 to 1930. Wiley Series in Probability and Statistics: Texts and References Section. Wiley, New York. · Zbl 0979.01012
[52] HARDY, G. H. and RAMANUJAN, S. (1918). Asymptotic formulaae in combinatory analysis. Proc. Lond. Math. Soc. 17 75-115. · JFM 46.0198.04 · doi:10.1112/plms/s2-17.1.75
[53] HARDY, G. H. and WRIGHT, E. M. (1960). The Theory of Numbers, 4th ed. Clarendon Press, Oxford. · Zbl 0086.25803
[54] HARTMAN, E. P. (1970). Adventures in Research: A History of Ames Research Center \(1940-1965\). National Aeronautics and Space Administration, Washington, DC.
[55] HEYDE, C. C. and SENETA, E. (1977). I. J. Bienaymé. Statistical Theory Anticipated. Studies in the History of Mathematics and Physical Sciences, No. 3. Springer, New York. · Zbl 0371.01010
[56] HILLE, E. (1926). On Laguerre’s series. Proc. Natl. Acad. Sci. USA 12 261-265, 265-269, 348-352. · JFM 52.0281.03
[57] JACKSON, D. (1935). Mathematical principles in the theory of small samples. Amer. Math. Monthly 72 344-364. · JFM 61.1307.04
[58] JACKSON, B. W. (no date). A History of the Mathematics Department at San Jose State. (accessed January 30, 2022).
[59] JELLISON, C. (1997). The prisoner and the professor. Stanford Mag. 72. March/April issue, https://stanfordmag.org/contents/the-prisoner-and-the-professor.
[60] KAPLANSKY, I. (2013). Integers uniquely represented by certain ternary forms. In The Mathematics of Paul Erdős I (R. L. Graham et al., eds.) 71-79. Springer, New York.
[61] KARATSUBA, A. A. (1981). Ivan Matveevich Vinogradov (on his ninetieth birthday). Russian Math. Surveys 36 1-17. · Zbl 0502.01019
[62] KRANDICK, W. and MEHLHORN, K. (2006). New bounds for the Descartes method. J. Symbolic Comput. 41 49-66. · Zbl 1158.12001 · doi:10.1016/j.jsc.2005.02.004
[63] LORENTZ, G. G. (2002). Mathematics and politics in the Soviet Union from 1928 to 1953. J. Approx. Theory 116 169-223. · Zbl 1006.01009 · doi:10.1006/jath.2002.3670
[64] MALYSHEV, A. V. and FADDEEV, D. K. (1961). Boris Alekseevich Venkov (on his sixtieth birthday). Uspekhi Mat. Nauk 16 235-240. · Zbl 0098.01105
[65] MARKOV, A. A. (1888). Table des valeurs de l’intégrale \[{\textstyle\int_x^{\infty }}{e^{-{t^2}}}dt\]. Imperial Academy of Sciences, St. Petersburg. · JFM 20.0433.01
[66] MARKOV, A. A. (1900). Ischislenie Veroiatnostei (Calculus of Probabilities). Tipografija Imperatorskoj Akademii Nauk, Sanktpeterburg. Three subsequent editions: 2nd ed., 1908, and 3rd ed., 1913; 4th (posthumous) ed., 1924, Gosudarstvennoe Izdatel’stvo, Moscow. German translation of 2nd ed.: Wahrscheinlichkeitsrechnung (Heinrich Liebmann, trans.), Teubner, Leipzig and Berlin, 1912.
[67] MARKOV, A., STEKLOV, V. and KRYLOV, N. (1921). Note on the scientific work of Petrograd University Professor Yakov Viktorovich Uspensky. Izv. Rossiyskoy Akad. Nauk (Ser. 6) 15 4-6.
[68] MCKAY, B. D. (1989). On Littlewood’s estimate for the binomial distribution. Adv. in Appl. Probab. 21 475-478. · Zbl 0668.60018 · doi:10.2307/1427172
[69] MILLER, G. H. (1970). Blichfeldt, Hans Frederick. In Dictionary of Scientific Biography (C. C. Gillispie, ed.) 2. Charles Scribner’s Son, New York. Reprinted 2008 in the ebook Complete Dictionary of Scientific Biography.
[70] MOLINA, E. C. (1944). Arne Fisher, 1887-1944. J. Amer. Statist. Assoc. 39 251.
[71] MUNROE, M. E. (1951). Theory of Probability. McGraw-Hill, Inc., New York-Toronto-London. · Zbl 0042.13503
[72] NAZAROV, A. I. and SINKEVICH, G. I. (2019). History of Leningrad mathematics in the first half of the 20th century. ICCM Not. 7 47-63. · Zbl 1431.01020 · doi:10.4310/ICCM.2019.v7.n2.a5
[73] NEVAI, P. (1986). Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory 48 3-167. · Zbl 0606.42020 · doi:10.1016/0021-9045(86)90016-X
[74] OLDS, C. D. (1963). Continued Fractions. Random House, New York. · Zbl 0123.25804
[75] OLDS, C. D. (1970). The simple continued fraction expansion of \(e\). Amer. Math. Monthly 77 968-974. · Zbl 0219.10010 · doi:10.2307/2318113
[76] ONDAR, K. O. (1981). The Correspondence Between A. A. Markov and A. A. Chuprov on the Theory of Probability and Mathematical Statistics. Springer, New York. Translated by Charles and Margaret Stein. · Zbl 0476.62002
[77] OSTROWSKI, A. M. (1950). Note on Vincent’s theorem. Ann. of Math. (2) 52 702-707. · Zbl 0039.01202 · doi:10.2307/1969443
[78] PEARSON, K. (1931). Historical note on the distribution of the standard deviations of samples of any size drawn from an indefinitely large normal parent population. Biometrika 23 416-418. · JFM 57.0634.02
[79] PEARSON, E. (1990). ‘Student’: A Statistical Biography of William Sealy Gosset. Clarendon Press, Oxford. R. L. Plackett and G. A.. Barnard, eds. · Zbl 0711.01030
[80] PEIZER, D. B. and PRATT, J. W. (1968). A normal approximation for binomial, \(F\), beta, and other common, related tail probabilities. I. J. Amer. Statist. Assoc. 63 1416-1456. · Zbl 0167.47402
[81] PERLMAN, M. D. and WICHURA, M. J. (1975). Sharpening Buffon’s needle. Amer. Statist. 29 157-163. · Zbl 0332.62026 · doi:10.2307/2683484
[82] PÓLYA, G., SZEGŐ, G. and YOUNG, D. H. (1947). Memorial Resolution: James Victor Uspensky. Stanford University Archives.
[83] RASHDALL, H. (1895). The Universities of Europe in the Middle Ages. Volume 1: Salerno—Bologna—Paris. Clarendon Press, Oxford.
[84] REEDS, J. A., DIFFIE, W. and FIELD, J. V. (2015). Breaking Teleprinter Ciphers at Bletchley Park. Wiley-IEEE Press, Piscataway, NJ. · Zbl 1347.94002
[85] RIETZ, H. L. (1924). Handbook of Mathematical Statistics. Houghton Mifflin, Boston, MA. · JFM 50.0355.06
[86] ROUCHÉ, E. (1888). Sur un problème relatif à la durée du jeu. C. R. Acad. Sci. 116 47-49. · JFM 20.0212.04
[87] ROYDEN, H. (1989). The history of the mathematics department at Stanford. In A Century of Mathematics in America, Part II (P. Duren, ed.) 237-278. Amer. Math. Soc., Providence, RI.
[88] ROYDEN, H., LYMAN, R., PHILLIPS, R., SUNSERI, M. and WINBIGLER, H. D. (1992). Memorial resolution: Harold M. Bacon (1907-1992). Department of Special Collections and University Archives. Available at https://purl.stanford.edu/ws360gk0273 (accessed February 29, 2020).
[89] SANSONE, G. (1950). La formula di approssimazione asintotica dei polinomi di Tchebychef-Laguerre col procedimento di J. V. Uspensky. Math. Z. 53 97-105. · Zbl 0037.05104 · doi:10.1007/BF01162402
[90] SEABASS, R. A. (2002). Harvard Lomax. In MAM2006: Markov Anniversary Meeting (A. N. Langville and W. J. Stewart, eds.) 169-172. The National Academies Press.
[91] SEAL, H. (1966). The random walk of a simple risk business. ASTIN Bull. J. IAA 4 19-28.
[92] SENETA, E. (2006). Markov and the the creation of Markov chains. In MAM2006: Markov Anniversary Meeting (A. N. Langville and W. J. Stewart, eds.) 1-20. Boson Books, Raleigh, NC.
[93] SENETA, E. (2013). A tricentenary history of the law of large numbers. Bernoulli 19 1088-1121. · Zbl 1277.60005 · doi:10.3150/12-BEJSP12
[94] SHEYNIN, O. (2005). Jakob Bernoulli: On the Law of Large Numbers. Unpublished translation.
[95] SIEGMUND-SCHULTZE, R. (2006). Probability in 1919/20: The von Mises-Pólya controversy. Arch. Hist. Exact Sci. 60 431-515. · Zbl 1098.01008 · doi:10.1007/s00407-006-0112-x
[96] STANFORD (1992). Long-time calculus professor Harold Bacon dies at 85. Stanford University News Service.
[97] STIGLER, S. M. (1986). The History of Statistics: The Measurement of Uncertainty Before 1900. The Belknap Press of Harvard Univ. Press, Cambridge, MA. · Zbl 0656.62005
[98] STRUTT, J. W. (1894). The Theory of Sound, Volume 1, 2nd ed. Macmillan, London and New York. (3rd Baron Rayleigh). · JFM 25.1604.01
[99] SVIDERSKAYA, G. E. (2002). Rodion Osievich Kuzmin.
[100] SYLLA, E. (2006). Jacob Bernoulli: The Art of Conjecturing. Johns Hopkins Univ. Press, Baltimore, MD. Translation of Jacob Bernoulli’s Ars conjectandi, with an introduction and notes, by Edith Dudley Sylla.
[101] SZEGÖ, G. (1939). Orthogonal Polynomials. American Mathematical Society Colloquium Publications, Vol. 23. Amer. Math. Soc., New York. · JFM 65.0278.03
[102] TIMOSHENKO, S. (1947). Typescript. Unpublished manuscript, presumably prepared shortly after Uspensky’s death and in the Stanford University Archives.
[103] TIMOSHENKO, S. (1968). As I Remember: The Autobiography of Stephen P. Timoshenko. Van Nostrand, Princeton, NJ. Translated from the Russian by Robert Addis.
[104] TODHUNTER, I. (1865). A History of the Mathematical Theory of Probability. Macmillan, Cambridge and London. Reprinted, 1949 and 1964, Chelsea, New York. [“A work of true learning, beyond criticism”—John Maynard Keynes.].
[105] USPENSKY, J. V. (1906). On whole numbers formed with the 5th root of unity. Mat. Sb. 26 1-17.
[106] USPENSKY, J. V. (1920). Asymptotic formulae for numerical functions which occur in the theory of the partition of numbers into summands. Bull. Acad. Sci. Russ. 14 199-218.
[107] USPENSKY, J. V. (1927). On a problem arising out of the theory of a certain game. Amer. Math. Monthly 34 516-521. · JFM 53.0167.05 · doi:10.2307/2299838
[108] USPENSKY, J. V. (1937). Introduction to Mathematical Probability. McGraw-Hill, New York. · JFM 63.1069.01
[109] USPENSKY, J. V. (1948). Theory of Equations. McGraw-Hill, New York.
[110] USPENSKY, J. V. and HEASLET, M. A. (1939). Elementary Number Theory. McGraw-Hill, Inc., New York. · Zbl 0024.24702
[111] USPENSKY, J. V. and VENKOV, B. (1928). On some new class-number relations. Bull. Acad. Sci. Russ. 1 315-317. · JFM 54.0178.05
[112] VENKOV, B. A. and NATANSON, I. P. (1949). Rodion Osievich Kuzmin (1891-1949) (obituary). Uspekhi Mat. Nauk 4 148-155. · Zbl 0032.19404
[113] VERGER, J. (2003). Teachers. In A History of the University in Europe. Volume 1: Universities in the Middle Ages (H. D. Ridder-Symoens, ed.) 144-168. Cambridge Univ. Press, Cambridge.
[114] WALL, H. S. (1948). Analytic Theory of Continued Fractions. D. Van Nostrand, New York, NY. · Zbl 0035.03601
[115] WENKOV, B. A. (1931). Über die Klassenanzahl positiver binärer quadratischer Formen. Math. Z. 33 350-374. · Zbl 0001.12003 · doi:10.1007/BF01174358
[116] WYTHOFF, W. A. (1907). A modification of the game of Nim. Nieuw Arch. Wiskd. (5) 7 199-202. · JFM 37.0261.03
[117] ZABELL, S. L. (2008). On student’s 1908 article “The probable error of a mean”. J. Amer. Statist. Assoc. 103 1-7 · Zbl 1469.62010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.