Hančl, Jaroslav; Matala-Aho, Tapani; Pulcerová, Simona Continued fractional measure of irrationality. (English) Zbl 1221.11157 Kyoto J. Math. 50, No. 1, 33-40 (2010). Es sei \([a_1,a_2,\dots]\) der reguläre Kettenbruch von \(a\in\mathbb{R}\setminus\mathbb{Q}, a>1\) und \(p_n/q_n\) sein \(n\)-ter Näherungsbruch; \(I(a):=-{\lim\inf}_{n\to\infty}\log_{q_n}|a-(p_n/q_n)|\) wird als Irrationalitätsmaß (oder -exponent) von \(a\) bezeichnet. Schließlich wird \(C(a):=\inf_{(c_n)\in\mathbb{N}^\mathbb{N}} I([a_1c_1,a_2,c_2,\dots])\) nach P. Erdős [J. Math. Sci. 10, 1–7 (1975; Zbl 0372.10023)] betrachtet.Eines der Hauptergebnisse lautet \(C(a)= 2^{\lim\sup_{n\to\infty}\log_2\log_2a_n}+1\), wobei \(\log_20:=0\) gesetzt ist. Ein zweites läßt sich so beschreiben: Hat man \(\lim_{n\to\infty}a_n^{1/K^n}\in]1,\infty[\) für ein reelles \(K>1\), so gilt \(I(a)=K+1\) und \(a\) ist transzendent. Kombination beider Resultate führt zu Folgendem: Seien \(K,a_1\in\mathbb{N}, K\geq2, a_{n+1}:=a_n^K+n!\) für jedes \(n\in\mathbb{N}\) und \(a:=[a_1,a_2,\dots]\), so ist \(I(a)=C(a)=K+1\) und \(a\) eine transzendente Zahl. Reviewer: Peter Bundschuh (Köln) Cited in 2 Documents MSC: 11J82 Measures of irrationality and of transcendence 11A55 Continued fractions Citations:Zbl 0372.10023 PDF BibTeX XML Cite \textit{J. Hančl} et al., Kyoto J. Math. 50, No. 1, 33--40 (2010; Zbl 1221.11157) Full Text: DOI OpenURL References: [1] P. Bundschuh, Transcendental continued fractions , J. Number Theory 18 (1984), 91-98. · Zbl 0531.10035 [2] P. Bundschuh, On simple continued fractions with partial quotients in arithmetic progressions , Lithuanian Math. J. 38 (1998), 15-26. · Zbl 0924.11058 [3] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers , Mathematika 2 (1955), 160-167. · Zbl 0066.29302 [4] P. Erdős, Some problems and results on the irrationality of the sum of infiniteseries , J. Math. Sci. 10 (1975), 1-7. · Zbl 0372.10023 [5] A. Folsom, Modular forms and Eisenstein’s continued fractions , J. Number Theory 117 (2006), 279-291. · Zbl 1114.11041 [6] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 6th ed., Oxford Univ. Press, Oxford, 1985. · Zbl 0020.29201 [7] J. Hančl, R. Nair, and J. Šustek, On the Lebesgue measure of the expressible set of certain sequences , Indag. Math. (N.S.) 17 (2006), 567-581. · Zbl 1131.11048 [8] J. Hančl, A. Schinzel, and J. Šustek, On expressible sets of geometric sequences , Functiones Approx. Comment. Math. 39 (2008), 71-95. · Zbl 1215.11077 [9] J. Hančl and S. Sobková, Special linearly unrelated sequences , J. Math. Kyoto Univ. 46 (2006), 31-45. · Zbl 1147.11038 [10] J. Hančl and J. Šustek, Expressible sets of sequences with Hausdorff dimension zero , Monatsh. Math. 152 (2007), 315-319. · Zbl 1142.11060 [11] J. Hančl and J. Šustek, Boundedly expressible sets , Czechoslovak Math. J. 59 (2009), 649-654. · Zbl 1207.11080 [12] J. Hančl and J. Šustek, Sequences of the Cantor type and their expressibility , to appear in J. Korean Math. Soc. [13] M. Hata and M. Huttner, “Padé approximation to the logarithmic derivative of the Gauss hypergeometric function” in Analytic Number Theory (Beijing/Kyoto, 1999), ed. Chaohua Jia and Kohji Matsumoto, Dev. Math. 6 , Kluwer, Dordrecht, 2002, 157-172. · Zbl 1114.33002 [14] M. Huttner and T. Matala-aho, Diophantine approximations for a constant related to elliptic functions , J. Math. Soc. Japan 53 (2001), 957-974. · Zbl 1069.11031 [15] T. Komatsu, On Hurwitzian and Tasoev’s continued fractions , Acta Arith. 107 (2003), 161-177. · Zbl 1026.11012 [16] T. Matala-aho and V. Merilä, On Diophantine approximations of Ramanujan type q-continued fractions , J. Number Theory 129 (2009), 1044-1055. · Zbl 1252.11057 [17] I. Shiokawa, “Rational approximations to the values of certain hypergeometric functions” in Number Theory and Combinatorics: Japan 1984 (Tokyo, Okayama, and Kyoto, 1984), ed. Jin Akiyama, Yuji Ito, Shigeru Kanemitsu, Takeshi Kano, Takayoshi Mitsui, and Iekata Shiokawa, World Sci., Singapore, 1985, 353-367. · Zbl 0614.10030 [18] L. C. Zhang, q-difference equations and Ramanujan-Selberg continued fractions , Acta Arith. 57 (1991), 307-355. · Zbl 0726.40006 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.