Schmeidel, Ewa; Zdanowicz, MAŁgorzata Existence of the asymptotically periodic solution to the system of nonlinear neutral difference equations. (English) Zbl 1481.39012 Tatra Mt. Math. Publ. 79, 149-162 (2021). MSC: 39A23 39A22 PDF BibTeX XML Cite \textit{E. Schmeidel} and \textit{M. Zdanowicz}, Tatra Mt. Math. Publ. 79, 149--162 (2021; Zbl 1481.39012) Full Text: DOI OpenURL
Migda, Malgorzata; Dutkiewicz, Aldona Asymptotic behavior of solutions of second-order difference equations of Volterra type. (English) Zbl 1430.39001 Turk. J. Math. 43, No. 5, 2203-2217 (2019). MSC: 39A10 39A22 39A12 45D05 PDF BibTeX XML Cite \textit{M. Migda} and \textit{A. Dutkiewicz}, Turk. J. Math. 43, No. 5, 2203--2217 (2019; Zbl 1430.39001) Full Text: Link OpenURL
Migda, Janusz; Migda, Małgorzata; Zbąszyniak, Zenon Asymptotically periodic solutions of second order difference equations. (English) Zbl 1428.39005 Appl. Math. Comput. 350, 181-189 (2019). MSC: 39A10 39A22 39A23 PDF BibTeX XML Cite \textit{J. Migda} et al., Appl. Math. Comput. 350, 181--189 (2019; Zbl 1428.39005) Full Text: DOI OpenURL
Messina, E.; Vecchio, A. Boundedness and asymptotic stability for the solution of homogeneous Volterra discrete equations. (English) Zbl 1417.39040 Discrete Dyn. Nat. Soc. 2018, Article ID 6935069, 8 p. (2018). MSC: 39A22 39A30 PDF BibTeX XML Cite \textit{E. Messina} and \textit{A. Vecchio}, Discrete Dyn. Nat. Soc. 2018, Article ID 6935069, 8 p. (2018; Zbl 1417.39040) Full Text: DOI OpenURL
Özbekler, Abdullah On the oscillation of discrete Volterra equations with positive and negative nonlinearities. (English) Zbl 1402.39007 J. Integral Equations Appl. 30, No. 4, 577-591 (2018). MSC: 39A21 39A10 PDF BibTeX XML Cite \textit{A. Özbekler}, J. Integral Equations Appl. 30, No. 4, 577--591 (2018; Zbl 1402.39007) Full Text: DOI Euclid OpenURL
Schmeidel, Ewa; Gajda, Karol; Gronek, Tomasz On the existence of weighted asymptotically constant solutions of Volterra difference equations of nonconvolution type. (English) Zbl 1304.39015 Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2681-2690 (2014). MSC: 39A22 39A23 39A21 PDF BibTeX XML Cite \textit{E. Schmeidel} et al., Discrete Contin. Dyn. Syst., Ser. B 19, No. 8, 2681--2690 (2014; Zbl 1304.39015) Full Text: DOI OpenURL
Cheng, Yue-Wen; Ding, Hui-Sheng Asymptotic behavior of solutions to a linear Volterra integrodifferential system. (English) Zbl 1293.45007 Abstr. Appl. Anal. 2013, Article ID 245905, 5 p. (2013). MSC: 45M05 45J05 45D05 45F05 PDF BibTeX XML Cite \textit{Y.-W. Cheng} and \textit{H.-S. Ding}, Abstr. Appl. Anal. 2013, Article ID 245905, 5 p. (2013; Zbl 1293.45007) Full Text: DOI OpenURL
Long, Wei; Pan, Wen-Hai Asymptotically almost periodic solution to a class of Volterra difference equations. (English) Zbl 1377.39027 Adv. Difference Equ. 2012, Paper No. 199, 12 p. (2012). MSC: 39A24 34K14 PDF BibTeX XML Cite \textit{W. Long} and \textit{W.-H. Pan}, Adv. Difference Equ. 2012, Paper No. 199, 12 p. (2012; Zbl 1377.39027) Full Text: DOI OpenURL
Diblík, Josef; Schmeidel, Ewa On the existence of solutions of linear Volterra difference equations asymptotically equivalent to a given sequence. (English) Zbl 1250.39002 Appl. Math. Comput. 218, No. 18, 9310-9320 (2012). Reviewer: Oleg Anashkin (Simferopol) MSC: 39A10 39A06 39A22 39A23 PDF BibTeX XML Cite \textit{J. Diblík} and \textit{E. Schmeidel}, Appl. Math. Comput. 218, No. 18, 9310--9320 (2012; Zbl 1250.39002) Full Text: DOI OpenURL