Gairola, Asha Ram; Singh, Amrita; Rathour, Laxmi; Mishra, Vishnu Narayan Improved rate of approximation by modification of Baskakov operator. (English) Zbl 07665221 Oper. Matrices 16, No. 4, 1097-1123 (2022). MSC: 41A35 41A10 41A25 PDF BibTeX XML Cite \textit{A. R. Gairola} et al., Oper. Matrices 16, No. 4, 1097--1123 (2022; Zbl 07665221) Full Text: DOI OpenURL
Holhoş, Adrian Voronovskaya-type results for positive linear operators of exponential type and their derivatives. (English) Zbl 07544777 Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1839-1861 (2022). Reviewer: Rishikesh Yadav (Namur) MSC: 41A36 41A28 PDF BibTeX XML Cite \textit{A. Holhoş}, Bull. Malays. Math. Sci. Soc. (2) 45, No. 4, 1839--1861 (2022; Zbl 07544777) Full Text: DOI OpenURL
Acu, Ana-Maria; Dancs, Madalina; Heilmann, Margareta; Paşca, Vlad; Rasa, Ioan Voronovskaya type results for special sequences of operators. (English) Zbl 1483.41005 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 19, 13 p. (2022). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{A.-M. Acu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116, No. 1, Paper No. 19, 13 p. (2022; Zbl 1483.41005) Full Text: DOI OpenURL
Abel, Ulrich; Siebert, Hartmut An improvement of the constant in Videnskiĭ’s inequality for Bernstein polynomials. (English) Zbl 1437.41008 Georgian Math. J. 27, No. 1, 1-7 (2020). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{U. Abel} and \textit{H. Siebert}, Georgian Math. J. 27, No. 1, 1--7 (2020; Zbl 1437.41008) Full Text: DOI OpenURL
Finta, Zoltán A quantitative variant of Voronovskaja’s theorem for King-type operators. (English) Zbl 1463.41024 Constr. Math. Anal. 2, No. 3, 124-129 (2019). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{Z. Finta}, Constr. Math. Anal. 2, No. 3, 124--129 (2019; Zbl 1463.41024) Full Text: DOI OpenURL
Kajla, Arun; Acar, Tuncer Modified \(\alpha\)-Bernstein operators with better approximation properties. (English) Zbl 1428.41026 Ann. Funct. Anal. 10, No. 4, 570-582 (2019). MSC: 41A36 41A10 41A25 PDF BibTeX XML Cite \textit{A. Kajla} and \textit{T. Acar}, Ann. Funct. Anal. 10, No. 4, 570--582 (2019; Zbl 1428.41026) Full Text: DOI Euclid OpenURL
Acu, Ana-Maria; Gupta, Vijay; Tachev, Gancho Better numerical approximation by Durrmeyer type operators. (English) Zbl 1423.41029 Result. Math. 74, No. 3, Paper No. 90, 24 p. (2019). Reviewer: Zoltán Finta (Cluj-Napoca) MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{A.-M. Acu} et al., Result. Math. 74, No. 3, Paper No. 90, 24 p. (2019; Zbl 1423.41029) Full Text: DOI arXiv OpenURL
Gupta, Vijay; Tachev, Gancho; Acu, Ana-Maria Modified Kantorovich operators with better approximation properties. (English) Zbl 1508.41005 Numer. Algorithms 81, No. 1, 125-149 (2019). Reviewer: Tuncer Acar (Selcuklu) MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{V. Gupta} et al., Numer. Algorithms 81, No. 1, 125--149 (2019; Zbl 1508.41005) Full Text: DOI OpenURL
Gairola, Asha Ram; Deepmala; Mishra, Lakshmi Narayan On the \(q\)-derivatives of a certain linear positive operators. (English) Zbl 1397.41005 Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 3, 1409-1417 (2018). MSC: 41A28 05A30 26A15 33D05 41A36 PDF BibTeX XML Cite \textit{A. R. Gairola} et al., Iran. J. Sci. Technol., Trans. A, Sci. 42, No. 3, 1409--1417 (2018; Zbl 1397.41005) Full Text: DOI OpenURL
Khosravian-Arab, Hassan; Dehghan, Mehdi; Eslahchi, M. R. A new approach to improve the order of approximation of the Bernstein operators: theory and applications. (English) Zbl 1388.41002 Numer. Algorithms 77, No. 1, 111-150 (2018). Reviewer: Francisco Pérez Acosta (La Laguna) MSC: 41A10 42A20 65D30 PDF BibTeX XML Cite \textit{H. Khosravian-Arab} et al., Numer. Algorithms 77, No. 1, 111--150 (2018; Zbl 1388.41002) Full Text: DOI OpenURL
Wafi, Abdul; Rao, Nadeem; Deepmala On Kantorovich form of generalized Szász-type operators using Charlier polynomials. (English) Zbl 1474.41069 Korean J. Math. 25, No. 1, 99-116 (2017). MSC: 41A36 PDF BibTeX XML Cite \textit{A. Wafi} et al., Korean J. Math. 25, No. 1, 99--116 (2017; Zbl 1474.41069) Full Text: DOI arXiv OpenURL
Mishra, V. N.; Gandhi, R. B. Simultaneous approximation by Szász-Mirakjan-Stancu-Durrmeyer type operators. (English) Zbl 1399.41046 Period. Math. Hung. 74, No. 1, 118-127 (2017). MSC: 41A36 41A10 PDF BibTeX XML Cite \textit{V. N. Mishra} and \textit{R. B. Gandhi}, Period. Math. Hung. 74, No. 1, 118--127 (2017; Zbl 1399.41046) Full Text: DOI OpenURL
Ulusoy, Gulsum; Acar, Tuncer \(q\)-Voronovskaya type theorems for \(q\)-Baskakov operators. (English) Zbl 1347.41030 Math. Methods Appl. Sci. 39, No. 12, 3391-3401 (2016). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{G. Ulusoy} and \textit{T. Acar}, Math. Methods Appl. Sci. 39, No. 12, 3391--3401 (2016; Zbl 1347.41030) Full Text: DOI OpenURL
Mishra, Vishnu Narayan; Gandhi, R. B.; Nasaireh, Fadel Simultaneous approximation by Szász-Mirakjan-Durrmeyer-type operators. (English) Zbl 1331.41020 Boll. Unione Mat. Ital. 8, No. 4, 297-305 (2016). MSC: 41A28 41A36 41A10 PDF BibTeX XML Cite \textit{V. N. Mishra} et al., Boll. Unione Mat. Ital. 8, No. 4, 297--305 (2016; Zbl 1331.41020) Full Text: DOI OpenURL
Dhamija, Minakshi; Sakai, Ryozi; Deo, Naokant On approximation by Phillips type modified Bernstein operator in a mobile interval. (English) Zbl 1412.41012 J. Class. Anal. 7, No. 1, 25-37 (2015). MSC: 41A25 41A36 PDF BibTeX XML Cite \textit{M. Dhamija} et al., J. Class. Anal. 7, No. 1, 25--37 (2015; Zbl 1412.41012) Full Text: DOI OpenURL
Acar, Tuncer Asymptotic formulas for generalized Szász-Mirakyan operators. (English) Zbl 1410.41025 Appl. Math. Comput. 263, 233-239 (2015). MSC: 41A36 41A25 PDF BibTeX XML Cite \textit{T. Acar}, Appl. Math. Comput. 263, 233--239 (2015; Zbl 1410.41025) Full Text: DOI OpenURL
Draganov, Borislav R. Strong estimates of the weighted simultaneous approximation by the Bernstein and Kantorovich operators and their iterated Boolean sums. (English) Zbl 1329.41019 J. Approx. Theory 200, 92-135 (2015); corrigendum ibid. 252, Article ID 105321, 3 p. (2020). Reviewer: Vijay Gupta (New Delhi) MSC: 41A25 41A30 PDF BibTeX XML Cite \textit{B. R. Draganov}, J. Approx. Theory 200, 92--135 (2015; Zbl 1329.41019) Full Text: DOI OpenURL
Păltănea, Radu; Stan, Gabriel Voronovskaja theorem for simultaneous approximation by Bernstein operators on a simplex. (English) Zbl 1321.41039 Mediterr. J. Math. 12, No. 3, 889-900 (2015). MSC: 41A36 41A63 41A28 41A10 PDF BibTeX XML Cite \textit{R. Păltănea} and \textit{G. Stan}, Mediterr. J. Math. 12, No. 3, 889--900 (2015; Zbl 1321.41039) Full Text: DOI OpenURL
Finta, Zoltán Generalized Voronovskaja theorem for \(q\)-Bernstein polynomials. (English) Zbl 1338.33027 Appl. Math. Comput. 246, 619-627 (2014). MSC: 33D45 PDF BibTeX XML Cite \textit{Z. Finta}, Appl. Math. Comput. 246, 619--627 (2014; Zbl 1338.33027) Full Text: DOI OpenURL
Gal, Sorin G. Differentiated generalized Voronovskaja’s theorem in compact disks. (English) Zbl 1257.30031 Result. Math. 61, No. 3-4, 347-353 (2012); erratum ibid. 63, No. 1-2, 713-716 (2013). MSC: 30E10 41A25 41A28 PDF BibTeX XML Cite \textit{S. G. Gal}, Result. Math. 61, No. 3--4, 347--353 (2012; Zbl 1257.30031) Full Text: DOI OpenURL
Makarov, V. L.; Demkiv, I. I. Approximation of the Urysohn operator by operator polynomials of Stancu type. (English. Russian original) Zbl 1263.41015 Ukr. Math. J. 64, No. 3, 356-386 (2012); translation from Ukr. Mat. Zh. 64, No. 3, 318-343 (2012). Reviewer: Vladimir V. Peller (East Lansing) MSC: 41A36 PDF BibTeX XML Cite \textit{V. L. Makarov} and \textit{I. I. Demkiv}, Ukr. Math. J. 64, No. 3, 356--386 (2012; Zbl 1263.41015); translation from Ukr. Mat. Zh. 64, No. 3, 318--343 (2012) Full Text: DOI Link OpenURL