×

Linear mixed models with marginally symmetric nonparametric random effects. (English) Zbl 1466.62166

Summary: Linear mixed models (LMMs) are used as an important tool in the data analysis of repeated measures and longitudinal studies. The most common form of LMMs utilizes a normal distribution to model the random effects. Such assumptions can often lead to misspecification errors when the random effects are not normal. One approach to remedy the misspecification errors is to utilize a point-mass distribution to model the random effects; this is known as the nonparametric maximum likelihood-fitted (NPML) model. The NPML model is flexible but requires a large number of parameters to characterize the random-effects distribution. It is often natural to assume that the random-effects distribution be at least marginally symmetric. The marginally symmetric NPML (MSNPML) random-effects model is introduced, which assumes a marginally symmetric point-mass distribution for the random effects. Under the symmetry assumption, the MSNPML model utilizes half the number of parameters to characterize the same number of point masses as the NPML model; thus the model confers an advantage in economy and parsimony. An EM-type algorithm is presented for the maximum likelihood (ML) estimation of LMMs with MSNPML random effects; the algorithm is shown to monotonically increase the log-likelihood and is proven to be convergent to a stationary point of the log-likelihood function in the case of convergence. Furthermore, it is shown that the ML estimator is consistent and asymptotically normal under certain conditions, and the estimation of quantities such as the random-effects covariance matrix and individual a posteriori expectations is demonstrated. A simulation study is used to illustrate the gains in efficiency of the MSNPML model over the NPML model under the assumption of symmetry. A pair of real data applications are then used to demonstrate the manner in which the MSNPML model can be used to draw useful statistical inference.

MSC:

62-08 Computational methods for problems pertaining to statistics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Agresti, A.; Caffo, B.; Ohman-Strickland, P., Examples in which misspecification of a random effects distribution reduces efficiency, and possible remedies, Comput. Statist. Data Anal., 47, 639-653, (2004) · Zbl 1429.62483
[2] Aitkin, M., A general maximum likelihood analysis of variance components in generalized linear models, Biometrics, 55, 117-128, (1999) · Zbl 1059.62564
[3] Akaike, H., A new look at the statistical model identification, IEEE Trans. Automat. Control, 19, 716-723, (1974) · Zbl 0314.62039
[4] Amemiya, T., Advanced econometrics, (1985), Harvard University Press Cambridge
[5] Arellano-Valle, R. B.; Bolfarine, H.; Lachos, V. H., Skew-normal linear mixed models, J. Data Sci., 3, 415-438, (2005)
[6] Atienza, N.; Garcia-Heras, J.; Munoz-Pichardo, J. M.; Villa, R., On the consistency of MLE in finite mixture models of exponential families, J. Statist. Plann. Inference, 137, 496-505, (2007) · Zbl 1102.62020
[7] Benaglia, T.; Chauveau, D.; Hunter, D. R.; Young, D. S., Mixtools: an R package for analyzing finite mixture models, J. Stat. Softw., 32, 1-29, (2009)
[8] Boos, D. D.; Stefanski, L. A., Essential statistical inference: theory and methods, (2013), Springer New York · Zbl 1276.62016
[9] Butler, S. M.; Louis, T. A., Random effects models with non-parametric priors, Stat. Med., 11, 1981-2000, (1992)
[10] Carnell, R., 2013. Triangle: provides the standard distribution functions for the triangle. URL: http://CRAN.R-project.org/package=triangle.
[11] Celeux, G.; Martin, O.; Lavergne, C., Mixture of linear mixed models for clustering gene expression profiles from repeated microarray experiments, Stat. Model., 5, 243-267, (2005) · Zbl 1111.62103
[12] Chauveau, D.; Hunter, D., ECM and MM algorithms for normal mixtures with constrained parameters. tech. rep, (2013), HAL
[13] Chee, C.-S.; Wang, Y., Estimation of finite mixtures with symmetric components, Stat. Comput., 23, 233-249, (2013) · Zbl 1322.62013
[14] Depraetere, N.; Vandebroek, M., Order selection in finite mixtures of linear regressions: literature review and a simulation study, Statist. Papers, 55, 871-911, (2014) · Zbl 1334.62138
[15] Eddelbuettel, D., Seamless R and C++ integration with rcpp, (2013), Springer New York · Zbl 1283.62001
[16] Efron, B.; Tibshirani, R., An introduction to the bootstrap, (1993), Chapman and Hall Dordrecht · Zbl 0835.62038
[17] Galimberti, G.; Soffritti, G., A multivariate linear regression analysis using finite mixtures of t distributions, Comput. Statist. Data Anal., 71, 138-150, (2014)
[18] Gilbert, P., Varadhan, R., 2012. numDeriv: Accurate numerical derivatives. URL: http://CRAN.R-project.org/package=numDeriv.
[19] Grun, B.; Leisch, F., Fitting finite mixtures of generalized linear regressions in R, Comput. Statist. Data Anal., 51, 5247-5252, (2007) · Zbl 1445.62192
[20] Grun, B.; Leisch, F., Flexmix version 2: finite mixtures with concomitant variables and varying and constant parameters, J. Stat. Softw., 28, 1-35, (2008)
[21] Ho, H. J.; Lin, T.-I., Robust linear mixed models using the skew t distribution with application to schitzophrenia data, Biom. J., 52, 449-469, (2010) · Zbl 1197.62055
[22] Keribin, C., Consistent estimation of the order of mixture models, Sankhyā Ser. A, 62, 49-65, (2000) · Zbl 1081.62516
[23] Kotz, S.; Van Dorp, J. R., Beyond beta: other continuous families of distributions with bounded support and applications, (2004), World Scientific Singapore · Zbl 1094.62012
[24] Lachos, V. H.; Ghosh, P.; Arellano-Valle, R. B., Likelihood based inference for skew-normal independent linear mixed models, Statist. Sinica, 20, 303-322, (2010) · Zbl 1186.62071
[25] Laird, N., Nonparametric maximum likelihood estimation of a mixing distribution, J. Amer. Statist. Assoc., 73, 805-811, (1978) · Zbl 0391.62029
[26] Laird, N. M.; Ware, J. H., Random-effects models for longitudinal data, Biometrics, 38, 963-974, (1982) · Zbl 0512.62107
[27] Lange, K., Optimization, (2013), Springer New York · Zbl 1273.90002
[28] Lee, S. X.; McLachlan, G. J., Finite mixtures of canonical fundamental skew \(t\)-distributions: the unification of the restricted and unrestricted skew t-mixture models, Stat. Comput., 26, 573-589, (2016) · Zbl 1420.60020
[29] Leroux, B. G., Consistent estimation of a mixing distribution, Ann. Statist., 20, 1350-1360, (1992) · Zbl 0763.62015
[30] McCulloch, C. E.; Neuhaus, J. M., Misspecifying the shape of a random effects distribution: why getting it wrong may not matter, Statist. Sci., 26, 388-402, (2011) · Zbl 1246.62169
[31] McCulloch, C. E.; Searle, S. R., Generalized, linear, and mixed models, (2001), Wiley New York · Zbl 0964.62061
[32] McLachlan, G. J., On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture, J. Roy. Statist. Soc. Ser. C, 36, 318-324, (1987)
[33] McLachlan, G. J.; Krishnan, T., The EM algorithm and extensions, (2008), Wiley New York · Zbl 1165.62019
[34] McLachlan, G. J.; Peel, D., Finite mixture models, (2000), Wiley New York · Zbl 0963.62061
[35] Meng, X.-L.; Rubin, D. B., Maximum likelihood estimation via the ECM algorithm: a general framework, Biometrika, 80, 267-278, (1993) · Zbl 0778.62022
[36] Miller, J. J., Asymptotic properties of maximum likelihood estimates in the mixed model of the analysis of variance, Ann. Statist., 5, 746-762, (1977) · Zbl 0406.62017
[37] Ng, S. K.; McLachlan, G. J.; Ben-Tovim, K. W.L.; Ng, S. W., A mixture model with random-effects components for clustering correlated gene-expression profiles, Bioinformatics, 22, 1745-1752, (2006)
[38] Nguyen, H. D.; McLachlan, G. J., Laplace mixture of linear experts, Comput. Statist. Data Anal., 93, 177-191, (2016) · Zbl 1468.62147
[39] Pinheiro, J. C.; Bates, D. M., Mixed-effects models in S and S-PLUS, (2000), Springer New York · Zbl 0953.62065
[40] Pinheiro, J.C., Bates, D., DebRoy, S., Sakar, D., R Core Team, 2014. nlme: Linear and nonlinear mixed effects models. URL: http://CRAN.R-project.org/package=nlme.
[41] Pinheiro, J. C.; Liu, C.; Wu, Y. N., Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution, J. Comput. Graph. Statist., 10, 249-276, (2001)
[42] Potthoff, R. F.; Roy, S. N., A generalized multivariate analysis of variance model useful espeically for growth curve problems, Biometrika, 51, 313-326, (1964) · Zbl 0138.14306
[43] Razaviyayn, M.; Hong, M.; Luo, Z.-Q., A unified convergence analysis of block successive minimization methods for nonsmooth optimization, SIAM J. Optim., 23, 1126-1153, (2013) · Zbl 1273.90123
[44] R: A language and environment for statistical computing, (2013), R Foundation for Statistical Computing
[45] Redner, R. A., Note on the consistency of the maximum likelihood estimate for nonidentifiable distributions, Ann. Statist., 9, 225-228, (1981) · Zbl 0453.62021
[46] Schwarz, G., Estimating the dimensions of a model, Ann. Statist., 6, 461-464, (1978) · Zbl 0379.62005
[47] Song, P. X.-K.; Zhang, P.; Qu, A., Maximum likelihood inference in robust linear mixed-effects models using multivariate t distributions, Statist. Sinica, 17, 929-943, (2007) · Zbl 1133.62013
[48] Stram, D. O.; Lee, J. W., Variance components testing in the longitudinal mixed effects model, Biometrics, 50, 1171-1177, (1994) · Zbl 0826.62054
[49] Titterington, D. M.; Smith, A. F.M.; Makov, U. E., Statistical analysis of finite mixture distributions, (1985), Wiley New York · Zbl 0646.62013
[50] Verbeke, G.; Lesaffre, E., A linear mixed-effects model with heterogeneity in the random-effects population, J. Amer. Statist. Assoc., 91, 217-221, (1996) · Zbl 0870.62057
[51] Verbeke, G.; Molenberghs, G., Linear mixed models for longitudinal data, (2000), Springer New York · Zbl 0956.62055
[52] Weiss, L., Properties of maximum likelihood estimators in some nonstandard cases, J. Amer. Statist. Assoc., 66, 345-350, (1971) · Zbl 0223.62037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.