×

Calculus of variations in the large: birth, formation, applications. (Russian. English summary) Zbl 1539.49001

Summary: The work is devoted to the evolution of the concepts and methods of the calculus of variations in the large, a branch of mathematics that is a little over a century old. The subject of this area is the study of qualitative characteristics of variational problems. In the development of the calculus of variations in the large several periods can be distinguished with features inherent in each of them. The first period is defined from the end of the 19th century. until the end of the 1940s, when the theory was born and formed, which was formed from two main parts – the Morse theory and the theory of Lyusternik-Shnirelman categories. Here, the features of traditional mathematics are still noticeable. In the next period - from the end of the 1940s to the end of the 1970s. the calculus of variation in the large was formed as a separate area of mathematics, and it acquired its modern form, based on the concepts and methods of algebraic topology. Ample opportunities opened up for solving new problems in mathematics, and a number of impressive results were obtained. The modern period can be defined from the late 1970s. until now. Its main feature is the unprecedented convergence of mathematics and the field of its applications, especially with physics. It has not always been possible to indicate a distinguishable boundary between the two fields of science; even the term “physical mathematics” has appeared. The calculus of variations in the large is included in the qualitative theory, which represents a significant part of modern mathematics and finds wide applications. But its place is even more significant, it is one of the foundations that forms our worldview.

MSC:

49-03 History of calculus of variations and optimal control
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
01A61 History of mathematics in the 21st century
49K10 Optimality conditions for free problems in two or more independent variables
49J10 Existence theories for free problems in two or more independent variables

References:

[1] Campbell L., Garnett W. The life of James Clerk Maxwell. L.: MacMillan and Co., 1882. 342 p.
[2] Maxwell J.C. On the transformations of surfaces by bending // The scientific papers of James Clerk Maxwell. Ed. W.D. Niven. V. 1. N.Y.: Dover Publ., 1965. Pp. 80-114.
[3] Maxwell J.C. Faraday // The scientific papers of James Clerk Maxwell. Ed. W.D. Niven. V. 2. N.Y.: Dover Publ., 1965. Pp. 355-360.
[4] Maxwell J.C. On Hills and Dales // The scientific papers of James Clerk Maxwell. Ed. W.D. Niven. V. 2. N.Y.: Dover Publ., 1965. Pp. 233-240.
[5] Cayley A. On Contour and Slope Lines // Phil. Mag. 1859. V. XVIII. Pp. 264-268.
[6] Мухин Р.Р. О теореме Пуанкаре-Биркгофа как важнейшем результате теории динамиче-ских систем // Чебышев. сб. 2022. Т. 23. № 1. С. 209-222.
[7] Poincaré, H. Sur les lignes géodésiques des surfaces convexes // Trans. AMS. V. 6. Pp. 237-274. · JFM 36.0669.01
[8] Jacobi C.G. Note von der geodätischen Linie auf einem Ellipsoid und der verschiedenen Anwendungen einer merkwürdigen Substitution // Crelles J. 1839. V. 19. S. 309-313. · ERAM 019.0621cj
[9] Darboux G. Leçon sur sur la théorie des surfaces. 3 partie. Paris: Gauthier-Villars, 1894.
[10] Hadamard J. Les surfacesà courbures opposeés et leurs lignes géodésiques // J. Math. pures et appl. 1898. V. 4. Pp. 27-73. · JFM 29.0522.01
[11] Poincaré H. Memoire sur les courbes définies par uneéquations differentielle // J. math. pures et appl. Sér. 3. 1881. V. 7. P. 375-422; 1882. V. 8. P. 251-296; · JFM 14.0666.01
[12] Sér. 4. 1885. V. 1. P. 167-244; 1886. V. 2. P. 151-217. Рус. пер.: Пуанкаре А. О кривых, определяемых дифференциальными уравнениями. М.: ГИТТЛ, 1947. 392 с.
[13] Morse M. The calculus of variations in the large. N.Y.: AMS, 1934. 360 p. · JFM 60.0450.01
[14] Погребысский И.Б. О геодезических линиях на выпуклых поверхностях // Анри Пуанкаре. Избр. труды. Т. 2. М.: Наука, 1972. С. 982-983.
[15] Birkhoff, G.D. An extension of Poincare’s last geometric theorem // Acta. Math. 1926. V. 47. Рp. 297-311. · JFM 52.0573.02
[16] Birkhoff, G.D. Dynamical systems with two degrees of freedom // Trans. AMS. 1917. V. 18. Pp. 199-300 / G.D. Birkhoff. Coll. math. papers. V. 2. N.Y.: AMS, 1950. Pp. 1-102.
[17] Birkhoff G.D. Dynamical Systems. Providence, Rhod Island: AMS, 1927. IX + 295 p. / Рус. пер.: Дж. Биркгоф Динамические системы / Пер. с англ. Ижевск: РХД, 1999. 408 с.
[18] Morse M. Relations between the critical points of a real functiond of n independent variables // Trans. AMS. 1925. V. 22. Pp. 84-110.
[19] Morse M. The foundations of a theory of the calculus of variations in the large // Trans. AMS. 1928. V. 30. Pp. 213-274. · JFM 54.0528.01
[20] Lefschetz S. Continuous transformations of manifolds // Proc. National Acad. Sci. 1925. V. 11. Pp. 290-292. · JFM 51.0446.01
[21] Hopf H. Vectorfelder in n-dimensionalen Mannigfoltigkeiten // Math. Ann. 1926. V. 96. S. 225-251. · JFM 52.0571.01
[22] Morse M. The calculus of variations in the large // Mat. Congr. Zurick, 1932. Pp. 173-188. · Zbl 0007.21203
[23] Lusternik L. Sur quelque méthodes topologiques dans le géométrie differentielle // Acti. Congr. Inter. Mat. Bologna. 1928. V. 4. Pp. 291-296. · JFM 57.0729.01
[24] Lusternik L., Schnirelmann L. Sur un principe topologique en analyse // Comp. Ren.. 1929. V. 188. Pp. 295-298. · JFM 55.0315.05
[25] Lusternik L., Schnirelmann L. Existence des trois géodésiques fermées sur tout surfaces de genre 0 // Comp. Ren.. 1929. V. 188. Pp. 269-271. · JFM 55.0316.02
[26] Люстерник Л.А., Шнирельман Л.Г. Топологические методы в вариационных задачах. М.: Госиздат, 1930. 68 с.
[27] Люстерник Л.А., Шнирельман Л.Г. Топологические методы в вариационных задачах и их приложения к дифференциальной геометрии поверхностей // УМН. 1947. Т. 2. В. 1(17).
[28] Шварц А.С. Топология пространств замкнутых кривых // Тр. ММО. 1960. Т. 9. С. 3-44.
[29] Клейн Ф. Элементарная математика с точки зрения высшей. Т. 1. М.: Наука, 1987. 435 с.
[30] Thom R. Sur une partition en cellules associée a une function sur une variété // Comp. Ren. 1949. T. 228. Pp. 973-975. · Zbl 0034.20802
[31] Tu L.V. The life and works of Raoul Bott // The founders of index theory. Ed. S.-T. Yau. Sommerville, MA: Int. Press, 2003. Pp. 85-112. · Zbl 1072.01021
[32] Bott R. Morse theory indominable // Publ. Math. IHES. 1988. V. 68. Pp. 99-114. · Zbl 0685.58009
[33] Милнор Дж. Теория Морса. М.: Мир, 1965. 186 с.
[34] Bott R. An application of the Morse theory to the topology of Lie-groops // Bull. SMF. 1956. V. 84. Pp. 251-281. · Zbl 0073.40001
[35] Bott R. The stable homotopy of the classical groops // Ann. Math. 1959. V. 70. N 2. Pp. 313-337. · Zbl 0129.15601
[36] Atyah M. Obituary Raoul Bott // Bull. London Math. Soc. 2010. V. 42. Pp. 170-180. · Zbl 1181.01039
[37] Андронов А.А., Понтрягин Л.С. Грубые системы // ДАН СССР. 1937. Т. 14. № 5. С. 247-252.
[38] Smale S. Finding a Horseshoe on the Beaches of Rio // Chaos Avant-Gard. Singapore: World Sci., 2000. Pp. 7-22. · Zbl 0983.37002
[39] Smale S. Morse inequalities for the dynamical system // Bull. AMS. 1960. V. 66. Pp. 43-49 / Рус. пер.: Смейл С. Неравенства Морса для динамических систем / Математика. 1967. Т. 11. В. 4. С. 79-87.
[40] Андронов А.А. Математические проблемы теории автоколебаний // I Всесоюзн. конф. по колебаниям. Т. I. М.: Гостехтеориздат, 1933. С. 32-71.
[41] Smale S. Generalized Poincare conjecture in a higher dimensions // Bull. AMS. 1960. V. 66. Pp. 373-375. · Zbl 0099.39201
[42] Smale S. Generalized Poincare conjecture in dimensions greater than four // Ann. Math. 1961. V. 74. Pp. 391-406. · Zbl 0099.39202
[43] Palis J. On Morse-Smale dynamical systems // Topology. 1969. V. 8. N 4. Pp. 385-404. · Zbl 0189.23902
[44] Palis J., Smale S. Structural stability theorems // Global Analysis. Proc. Simp. Pure Math. Providence, RI. 1970. V. 14. Pp. 223-231. · Zbl 0214.50702
[45] Smale S. On gradient dynamical systems // Ann. Math. 1961. V. 74. N 1. Pp. 199-206. · Zbl 0136.43702
[46] Smale S. A structurally stable differential homomorphysm with an infinite number of periodic points // Тр. Межд. симпоз. по нелин. колебаниям. Киев 1961. Киев: АН УССР, 1963. С. 365-366. · Zbl 0125.11601
[47] Smale S. A structurally stable systems are not dense // Am. J. Math. 1966. V. 88. N 2. Pp. 491-496 / Рус. пер.: Смейл С. Грубые системы не плотны / Математика. 1967. Т. 11, № 4. С. 107-112.
[48] Dirac P.A. M. Quantized singularities in the electromagnetic field // Proc. Roy. Soc. 1931 V. 31. V. 133. Pp. 60-72. · Zbl 0002.30502
[49] Смейл С. Топология и механика // УМН. 1972. Т. 27. В. 2(164). С. 77-133.
[50] Palmore J.L. Classifying relative equilibria // Bull. AMS. 1973. V. 79. Pp. 904-908; 1975. V. 81. Pp. 488-491.
[51] Козлов В.В. Вариационное исчисление в целом и классическая механика // УМН. 1985. Т. 40. В. 2(242). С. 33-60.
[52] Козлов В.В. Интегрируемость и неинтегрируемость в гамильтоновой механике // УМН. 1983. Т. 38. В. 1. С. 3-67.
[53] Козлов В.В. Топологические препятствия к интегрируемости натуральных механических систем // ДАН СССР. 1979. Т. 249. № 6. С. 1299-1302.
[54] Арнольд В.И. Математические методы классической механики. М.: Наука, 1989. 472 с. · Zbl 0692.70003
[55] Новиков С.П. Многозначные функции и функционалы. Аналог теории Морса // ДАН СССР. 1981. Т. 260. № 1. С. 31-34.
[56] Новиков С.П., Шмельцер И. Периодические решения уравнений Кирхгофа для свободного движения твердого тела в жидкости и расширенная теория Люстерника-Шнирельмана-Морса (ЛШМ) // Функц. анализ и его прил. 1981. Т. 15. В. 3. С. 54-66.
[57] А. В. Боева, Р. Р. Мухин
[58] Новиков С.П. Вариационные методы и периодические решения уравнений типа Кирхгофа // Функц. анализ и его прил. 1981. Т. 15. В. 4. С. 37-52.
[59] Кирхгоф Г. Механика. Лекции по математической физике. М.: Из-во АН СССР, 1962. 402 с.
[60] Борисов А.В., Мамаев И.С. Пуассоновы структуры и алгебры Ли в гамильтоновой меха-нике. Ижевск: Изд. Дом «Удмурт. ун-т», 1999. 464 с.
[61] Новиков С.П. Гамильтонов формализм и многозначный аналог теории Морса // УМН. 1982. Т. 37. В. 5(227). С. 3-49.
[62] Michel L., Mozrzymas B. Application of Morse theory to the symmetry breaking in the Landau theory of second order phase transition // Group theoretical methods in physics. Lecture notes in physics. Berlin: Springer-Verlag, 1978. Pp. 447-461.
[63] Belavin A.A., Polyakov A.M., Schwarz A.S., Tyupkin Y.S. Pseudopartical solutions of the Yang-Mills equations // Phys. Lett. 1975. V. 59B. Pp. 85-87.
[64] Поляков А. М. Спектр частиц в квантовой теории поля // Письма в ЖЭТФ. 1974. Т. 20. В. 6. С. 430-433.
[65] Atyah M. Geometry of Yang-Mills fields. Fermi lecture // Michel Atyah. Collected works. V. 5. Oxford: Clarendon Press, 1988. Pp. 75-174.
[66] Atyah M., Bott R. The Yang-Mills equations over Riemann surfaces // Phil. Trans. Soc. Lond. 1982. V. A 308. Pp. 523-615. · Zbl 0509.14014
[67] Witten E. Supersymmetry and MORSE Theory // J. Dif. Geometry. 1982. V. 17(4). Pp. 661-692. · Zbl 0499.53056
[68] Donaldson S. Self-dual connections and the topology of smooth 4-manifolds // Bull. AMS. 1983. V. 8. Pp. 81-83. · Zbl 0519.57012
[69] Donaldson S., Kronheimer P. The Geometry of Four-Manifolds. Oxford: OUP, 1990. 440 p. · Zbl 0820.57002
[70] Бурбаки Н, Очерки по истории математики. М.: Изд-во иностр. литературы, 1963. 292 с.
[71] Alvarez-Gaume L. Supersymmetry and the Atiyah-Singer Index Theorem // Comm. Math. Phys. 1983. V. 90. Pp. 161-173. · Zbl 0528.58034
[72] Монастырский М.И. Современная математика в отблеске медалей Филдса. М.: Янус-К, 2000. 200 с.
[73] Campbell L., Garnett W. The life of James Clerk Maxwell. L.: MacMillan and Co., 1882. 342 p.
[74] Maxwell J.C. On the transformations of surfaces by bending // The scientific papers of James Clerk Maxwell. Ed. W.D. Niven. V. 1. N.Y.: Dover Publ., 1965. Pp. 80-114.
[75] Maxwell J.C. Faraday // The scientific papers of James Clerk Maxwell. Ed. W.D. Niven. V. 2. N.Y.: Dover Publ., 1965. Pp. 355-360.
[76] Maxwell J.C. On Hills and Dales // The scientific papers of James Clerk Maxwell. Ed. W.D. Niven. V. 2. N.Y.: Dover Publ., 1965. Pp. 233-240.
[77] Cayley A. On Contour and Slope Lines // Phil. Mag. 1859. V. XVIII. Pp. 264-268.
[78] Mukhin R.R. On the Poincaré-Birkhoff theorem as the most important result of the theory of dynamical systems // Chebyshev collection. 2022. V. 23. No. 1. Pp. 209-222 (in Russian). · Zbl 1525.37023
[79] Poincaré, H. Sur les lignes géodésiques des surfaces convexes // Trans. AMS. V. 6. Pp. 237-274. · JFM 36.0669.01
[80] Jacobi C.G. Note von der geodätischen Linie auf einem Ellipsoid und der verschiedenen Anwendungen einer merkwürdigen Substitution // Crelles J. 1839. V. 19. S. 309-313. · ERAM 019.0621cj
[81] Darboux G. Leçon sur sur la théorie des surfaces. 3 partie. Paris: Gauthier-Villars, 1894.
[82] Hadamard J. Les surfacesà courbures opposeés et leurs lignes géodésiques // J. Math. pures et appl. 1898. V. 4. Pp. 27-73. · JFM 29.0522.01
[83] Poincaré H. Memoire sur les courbes définies par uneéquations differentielle // J. math. pures et appl. Sér. 3. 1881. V. 7. P. 375-422; 1882. V. 8. P. 251-296; · JFM 14.0666.01
[84] Morse M. The calculus of variations in the large. N.Y.: AMS, 1934. 360 p. · JFM 60.0450.01
[85] Pogrebyssky I.B. On geodesic lines on convex surfaces // Henri Poincaré. Collect. works. V. 2. M.: Nauka, 1972. Pp. 982-983 (in Russian).
[86] Birkhoff, G.D. An extension of Poincare’s last geometric theorem // Acta. Math. 1926. V. 47. Рp. 297-311. · JFM 52.0573.02
[87] Birkhoff, G.D. Dynamical systems with two degrees of freedom // Trans. AMS. 1917. V. 18. Pp. 199-300 / G.D. Birkhoff. Coll. math. papers. V. 2. N.Y.: AMS, 1950. Pp. 1-102.
[88] Birkhoff G.D. Dynamical Systems. Providence, Rhod Island: AMS, 1927. IX + 295 p. · JFM 53.0733.03
[89] Morse M. Relations between the critical points of a real functiond of n independent variables // Trans. AMS. 1925. V. 22. Pp. 84-110.
[90] Morse M. The foundations of a theory of the calculus of variations in the large // Trans. AMS. 1928. V. 30. Pp. 213-274. · JFM 54.0528.01
[91] Lefschetz S. Continuous transformations of manifolds // Proc. National Acad. Sci. 1925. V. 11. Pp. 290-292. · JFM 51.0446.01
[92] Hopf H. Vectorfelder in n-dimensionalen Mannigfoltigkeiten // Math. Ann. 1926. V. 96. S. 225-251. · JFM 52.0571.01
[93] Morse M. The calculus of variations in the large // Mat. Congr. Zurick, 1932. Pp. 173-188. · Zbl 0007.21203
[94] Lusternik L. Sur quelque méthodes topologiques dans le géométrie differentielle // Acti. Congr. Inter. Mat. Bologna. 1928. V. 4. Pp. 291-296. · JFM 57.0729.01
[95] Lusternik L., Schnirelmann L. Sur un principe topologique en analyse // Comp. Ren.. 1929. V. 188. Pp. 295-298. · JFM 55.0315.05
[96] Lusternik L., Schnirelmann L. Existence des trois géodésiques fermées sur tout surfaces de genre 0 // Comp. Ren.. 1929. V. 188. Pp. 269-271. · JFM 55.0316.02
[97] Lyusternik L.A., Shnirelman L.G. Topological methods in variational problems. M.: Gosizdat, 1930. 68 p. (in Russian).
[98] Lyusternik L.A., Shnirelman L.G. Topological methods in variational problems and their applications to differential geometry of surfaces // Russian Mat. Survey. 1947. Vol. 2. V. 1(17). Pp. 166-217 (in Russian). · Zbl 1446.53052
[99] Shvarts A.S. Topology of spaces of closed curves // Proc. Moscow Math. Soc. 1960. T. 9. Pp. 3-44 (in Russian).
[100] Klein F. Elementarmathematik vom hoheren Standpunkte aus. Teil I. Berlin: Springer, 1968. 614 S. · Zbl 0157.00303
[101] Thom R. Sur une partition en cellules associée a une function sur une variété // Comp. Ren. 1949. T. 228. Pp. 973-975. · Zbl 0034.20802
[102] Tu L.V. The life and works of Raoul Bott // The founders of index theory. Ed. S.-T. Yau. Sommerville, MA: Int. Press, 2003. Pp. 85-112. · Zbl 1072.01021
[103] Bott R. Morse theory indominable // Publ. Math. IHES. 1988. V. 68. Pp. 99-114. · Zbl 0685.58009
[104] Milnor J. Morse theory. Princeton, N.J.: Princeton Univ.Press, 1963. 154 p. · Zbl 0108.10401
[105] Bott R. An application of the Morse theory to the topology of Lie-groops // Bull. SMF. 1956. V. 84. Pp. 251-281. · Zbl 0073.40001
[106] Bott R. The stable homotopy of the classical groops // Ann. Math. 1959. V. 70. N 2. Pp. 313-337. · Zbl 0129.15601
[107] Atyah M. Obituary Raoul Bott // Bull. London Math. Soc. 2010. V. 42. Pp. 170-180. · Zbl 1181.01039
[108] Andronov A.A., Pontryagin L.S. Rough systems // Rep. Acad. Sci. USSR. 1937. V. 14, Pp. 247-250 (in Russian). · Zbl 0016.11301
[109] Smale S. Finding a Horseshoe on the Beaches of Rio // Chaos Avant-Gard. Singapore: World Sci., 2000. Pp. 7-22. · Zbl 0983.37002
[110] Smale S. Morse inequalities for the dynamical system // Bull. AMS. 1960. V. 66. Pp. 43-49. · Zbl 0100.29701
[111] Andronov A.A. Mathematical problems in self-oscillation theory // A.A. Andronov. Coll. Works, M.: Acad. Sci. USSR, 1956. Pp. 32-71 (in Russian).
[112] Smale S. Generalized Poincare conjecture in a higher dimensions // Bull. AMS. 1960. V. 66. Pp. 373-375. · Zbl 0099.39201
[113] Smale S. Generalized Poincare conjecture in dimensions greater than four // Ann. Math. 1961. V. 74. Pp. 391-406. · Zbl 0099.39202
[114] Palis J. On Morse-Smale dynamical systems // Topology. 1969. V. 8. N 4. Pp. 385-404. · Zbl 0189.23902
[115] Palis J., Smale S. Structural stability theorems // Global Analysis. Proc. Simp. Pure Math. Providence, RI. 1970. V. 14. Pp. 223-231. · Zbl 0214.50702
[116] Smale S. On gradient dynamical systems // Ann. Math. 1961. V. 74. N 1. Pp. 199-206. · Zbl 0136.43702
[117] Smale S. A structurally stable differential homomorphysm with an infinite number of periodic points // Proc. Int. Symp. Nonlin. Oscillations. Kyiv 1961. Kyiv: AN Ukranian SSR, 1963. Pp. 365-366. · Zbl 0125.11601
[118] Smale S. A structurally stable systems are not dense // Am. J. Math. 1966. V. 88. N 2. Pp. 491-496. · Zbl 0149.20001
[119] Dirac P.A. M. Quantized singularities in the electromagnetic field // Proc. Roy. Soc. 1931 V. 31. V. 133. Pp. 60-72. · JFM 57.1581.06
[120] Smale S. Topology and mechanics // Invent. Math. 1970. N10. Pp. 305-351.
[121] Palmore J.L. Classifying relative equilibria // Bull. AMS. 1973. V. 79. Pp. 904-908; 1975. V. 81. Pp. 488-491.
[122] Kozlov V.V. Calculus of variations in the large and classical mechanics // Russian Mat. Survey. 1985. Vol. 40. Issue 2(242). Pp. 33-60 (in Russian). · Zbl 0557.70025
[123] Kozlov V.V. Integrability and non-integrability in Hamiltonian mechanics // Russian Mat. Survey. 1983. Vol. 38. Issue 1. Pp. 3-67 (in Russian). · Zbl 0525.70023
[124] Kozlov V.V. Topological obstacles to the integrability of natural mechanical systems // Rep. Acad. Sci. USSR. 1979. V. 249. N. 6. Pp. 1299-1302 (in Russian).
[125] Arnold V.I. Mathematical methods of classical mechanics. N.Y.: Springer-Verlag, 1989. 536 p. · Zbl 0692.70003
[126] Novikov S.P. Multivalued functions and functionals. An analogue of the Morse theory // Rep. Acad. Sci. USSR. 1981. V. 260. N. 1. Pp. 31-34 (in Russian).
[127] Novikov S.P., Shmeltser I. Periodic Solutions of the Kirchhoff Equations for Free Motion of a Rigid Body in a Fluid and the Extended Lyusternik-Shnirelman-Morse (LSM) Theory // Funct. analysis and its applications. 1981. V. 15. Issue. 3. Pp. 54-66 (in Russian). · Zbl 0571.58009
[128] Novikov S.P. Variational Methods and Periodic Solutions of Kirchhoff Type Equations // Funct. analysis and its applications. 1981. V. 15. Issue. 4. Pp. 37-52 (in Russian).
[129] Kirchhoff G. Vorlesungen¨ber mechanic. Leipzig: B. G. Teubner, 1897. 475 p.
[130] Borisov A.V., Mamaev I.S. Poisson structures and Lie algebras in Hamiltonian mechanics. Izhevsk: Ed. House “Udmurt. Univ.”, 1999. 464 p. (in Russian). · Zbl 1010.70002
[131] Novikov S.P. Hamiltonian formalism and a many-valued analogue of Morse theory // Russian Mat. Survey. 1982. V. 37. Issue 5(227). Pp.3-49 (in Russian). · Zbl 0571.58011
[132] Michel L., Mozrzymas B. Application of Morse theory to the symmetry breaking in the Landau theory of second order phase transition // Group theoretical methods in physics. Lecture notes in physics. Berlin: Springer-Verlag, 1978. Pp. 447-461.
[133] Belavin A.A., Polyakov A.M., Schwarz A.S., Tyupkin Y.S. Pseudopartical solutions of the Yang-Mills equations // Phys. Lett. 1975. V. 59B. Pp. 85-87.
[134] Polyakov A. M. The spectrum of particles in quantum field theory // JETP Letters. 1974. V. 20. Issue 6. Pp. 430-433 (in Russian).
[135] Atyah M. Geometry of Yang-Mills fields. Fermi lecture // Michel Atyah. Collected works. V. 5. Oxford: Clarendon Press, 1988. Pp. 75-174.
[136] Atyah M., Bott R. The Yang-Mills equations over Riemann surfaces // Phil. Trans. Soc. Lond. 1982. V. A 308. Pp. 523-615. · Zbl 0509.14014
[137] Witten E. Supersymmetry and MORSE Theory // J. Dif. Geometry. 1982. V. 17(4). Pp. 661-692. · Zbl 0499.53056
[138] Donaldson S. Self-dual connections and the topology of smooth 4-manifolds // Bull. AMS. 1983. V. 8. Pp. 81-83. · Zbl 0519.57012
[139] Donaldson S., Kronheimer P. The Geometry of Four-Manifolds. Oxford: OUP, 1990. 440 p. · Zbl 0820.57002
[140] Bourbaki N. Elements of the history of mathematics. N.Y.: Springer-Verlag, 1994. 301 p. · Zbl 0803.01002
[141] Alvarez-Gaume L. Supersymmetry and the Atiyah-Singer Index Theorem // Comm. Math. Phys. 1983. V. 90. Pp. 161-173. · Zbl 0528.58034
[142] Monastyrsky M.I. Modern Mathematics in the Light of the Fields Medals. M.: Janus-K, 2000. 200 p. (in Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.