Mesmouli, Mouataz Billah; Ardjouni, Abdelouaheb; Iqbal, Naveed Existence and asymptotic behaviors of nonlinear neutral Caputo nabla fractional difference equations. (English) Zbl 07570262 Afr. Mat. 33, No. 3, Paper No. 83, 12 p. (2022). MSC: 34K20 26A33 47H10 PDF BibTeX XML Cite \textit{M. B. Mesmouli} et al., Afr. Mat. 33, No. 3, Paper No. 83, 12 p. (2022; Zbl 07570262) Full Text: DOI OpenURL
Bendoukha, Samir On the dynamics and control of a new fractional difference chaotic map. (English) Zbl 07533171 Int. J. Nonlinear Sci. Numer. Simul. 23, No. 2, 299-310 (2022). MSC: 34A08 34H10 34D06 PDF BibTeX XML Cite \textit{S. Bendoukha}, Int. J. Nonlinear Sci. Numer. Simul. 23, No. 2, 299--310 (2022; Zbl 07533171) Full Text: DOI OpenURL
Ran, Jie; Li, Yu-Qin; Xiong, Yi-Bin On the dynamics of fractional q-deformation chaotic map. (English) Zbl 07529350 Appl. Math. Comput. 424, Article ID 127053, 12 p. (2022). MSC: 34A08 34D06 34H10 PDF BibTeX XML Cite \textit{J. Ran} et al., Appl. Math. Comput. 424, Article ID 127053, 12 p. (2022; Zbl 07529350) Full Text: DOI OpenURL
Cresson, Jacky; Jiménez, Fernando; Ober-Blöbaum, Sina Continuous and discrete Noether’s fractional conserved quantities for restricted calculus of variations. (English) Zbl 1487.49027 J. Geom. Mech. 14, No. 1, 57-89 (2022). MSC: 49K21 26A33 70G65 37M15 PDF BibTeX XML Cite \textit{J. Cresson} et al., J. Geom. Mech. 14, No. 1, 57--89 (2022; Zbl 1487.49027) Full Text: DOI OpenURL
Rashid, Saima; Abouelmagd, Elbaz I.; Khalid, Aasma; Farooq, Fozia Bashir; Chu, Yu-Ming Some recent developments on dynamical \(\hbar\)-discrete fractional type inequalities in the frame of nonsingular and nonlocal kernels. (English) Zbl 1487.39011 Fractals 30, No. 2, Article ID 2240110, 15 p. (2022). MSC: 39A13 39A70 34A08 26A33 PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 2, Article ID 2240110, 15 p. (2022; Zbl 1487.39011) Full Text: DOI OpenURL
Rashid, Saima; Abouelmagd, Elbaz I.; Sultana, Sobia; Chu, Yu-Ming New developments in weighted \(n\)-fold type inequalities via discrete generalized \(\hat{\hbar}\)-proportional fractional operators. (English) Zbl 07507540 Fractals 30, No. 2, Article ID 2240056, 16 p. (2022). MSC: 26Axx 39Axx 26Dxx PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 2, Article ID 2240056, 16 p. (2022; Zbl 07507540) Full Text: DOI OpenURL
Rashid, Saima; Sultana, Sobia; Karaca, Yeliz; Khalid, Aasma; Chu, Yu-Ming Some further extensions considering discrete proportional fractional operators. (English) Zbl 07490662 Fractals 30, No. 1, Article ID 2240026, 12 p. (2022). MSC: 26Axx 39Axx 26Dxx PDF BibTeX XML Cite \textit{S. Rashid} et al., Fractals 30, No. 1, Article ID 2240026, 12 p. (2022; Zbl 07490662) Full Text: DOI OpenURL
Goodrich, Christopher S. An analysis of nonlocal difference equations with finite convolution coefficients. (English) Zbl 1486.39021 J. Fixed Point Theory Appl. 24, No. 1, Paper No. 1, 19 p. (2022). MSC: 39A27 39A13 26A33 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Fixed Point Theory Appl. 24, No. 1, Paper No. 1, 19 p. (2022; Zbl 1486.39021) Full Text: DOI OpenURL
Rashid, Saima; Sultana, Sobia; Hammouch, Zakia; Jarad, Fahd; Hamed, Y. S. Novel aspects of discrete dynamical type inequalities within fractional operators having generalized \(\hbar\)-discrete Mittag-Leffler kernels and application. (English) Zbl 07568896 Chaos Solitons Fractals 151, Article ID 111204, 9 p. (2021). MSC: 26A51 26A33 26D07 26D10 26D15 PDF BibTeX XML Cite \textit{S. Rashid} et al., Chaos Solitons Fractals 151, Article ID 111204, 9 p. (2021; Zbl 07568896) Full Text: DOI OpenURL
Asliyüce, Serkan; Güvenilir, Ayşe Feza Chebyshev type inequalities with fractional delta and nabla \(h\)-sum operators. (English) Zbl 07544714 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 1, 357-365 (2021). MSC: 26D15 26A33 26E70 PDF BibTeX XML Cite \textit{S. Asliyüce} and \textit{A. F. Güvenilir}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 70, No. 1, 357--365 (2021; Zbl 07544714) Full Text: DOI OpenURL
Aldurayhim, A.; Elsadany, A. A.; Elsonbaty, A. On dynamic behavior of a discrete fractional-order nonlinear prey-predator model. (English) Zbl 07542094 Fractals 29, No. 8, Article ID 2140037, 20 p. (2021). MSC: 37N25 26A33 39A33 39A13 93B52 PDF BibTeX XML Cite \textit{A. Aldurayhim} et al., Fractals 29, No. 8, Article ID 2140037, 20 p. (2021; Zbl 07542094) Full Text: DOI OpenURL
Rashid, Saima; Sultana, Sobia; Jarad, Fahd; Jafari, Hossein; Hamed, Y. S. More efficient estimates via \(\hslash\)-discrete fractional calculus theory and applications. (English) Zbl 1486.26019 Chaos Solitons Fractals 147, Article ID 110981, 13 p. (2021). MSC: 26A51 26D10 26A33 PDF BibTeX XML Cite \textit{S. Rashid} et al., Chaos Solitons Fractals 147, Article ID 110981, 13 p. (2021; Zbl 1486.26019) Full Text: DOI OpenURL
Gholami, Yousef A uniqueness criterion for nontrivial solutions of the nonlinear higher-order \(\nabla \)-difference systems of fractional-order. (English) Zbl 07530048 Fract. Differ. Calc. 11, No. 1, 85-110 (2021). MSC: 34A08 34F15 39A12 39A10 34A12 PDF BibTeX XML Cite \textit{Y. Gholami}, Fract. Differ. Calc. 11, No. 1, 85--110 (2021; Zbl 07530048) Full Text: DOI OpenURL
Dahal, Rajendra; Goodrich, Christopher S. Analysis of convexity results for discrete fractional nabla operators. (English) Zbl 07524117 Rocky Mt. J. Math. 51, No. 6, 1981-2001 (2021). MSC: 26A51 33F05 39A12 65D15 65Q20 39A99 39B62 PDF BibTeX XML Cite \textit{R. Dahal} and \textit{C. S. Goodrich}, Rocky Mt. J. Math. 51, No. 6, 1981--2001 (2021; Zbl 07524117) Full Text: DOI Link OpenURL
Segi Rahmat, Rafi Mohamad The Gronwall’s inequality on the \((q,h)\)-time scale. (English) Zbl 1483.39002 Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 183-196 (2021). MSC: 39A12 26E70 39A70 PDF BibTeX XML Cite \textit{R. M. Segi Rahmat}, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 28, No. 3, 183--196 (2021; Zbl 1483.39002) Full Text: Link OpenURL
Khan, Zareen A.; Ahmad, Hijaz Qualitative properties of solutions of fractional differential and difference equations arising in physical models. (English) Zbl 07465624 Fractals 29, No. 5, Article ID 2140024, 10 p. (2021). Reviewer: Rui Ferreira (Lisboa) MSC: 39A13 39A70 34A08 26A33 PDF BibTeX XML Cite \textit{Z. A. Khan} and \textit{H. Ahmad}, Fractals 29, No. 5, Article ID 2140024, 10 p. (2021; Zbl 07465624) Full Text: DOI OpenURL
Goodrich, Christopher S.; Jonnalagadda, Jagan M. Monotonicity results for CFC nabla fractional differences with negative lower bound. (English) Zbl 1485.39006 Analysis, München 41, No. 4, 221-229 (2021). MSC: 39A12 39A13 26A33 PDF BibTeX XML Cite \textit{C. S. Goodrich} and \textit{J. M. Jonnalagadda}, Analysis, München 41, No. 4, 221--229 (2021; Zbl 1485.39006) Full Text: DOI OpenURL
Zarour, Abdelwahab; Ouannas, Adel; Latrous, Chahla; Berkane, Abdelhak Linear chaos control of fractional generalized Hénon map. (English) Zbl 07446964 Nonlinear Dyn. Syst. Theory 21, No. 2, 216-224 (2021). MSC: 39-XX 37-XX PDF BibTeX XML Cite \textit{A. Zarour} et al., Nonlinear Dyn. Syst. Theory 21, No. 2, 216--224 (2021; Zbl 07446964) Full Text: Link OpenURL
Dahal, Rajendra; Goodrich, Christopher S.; Lyons, Benjamin Monotonicity results for sequential fractional differences of mixed orders with negative lower bound. (English) Zbl 1485.26010 J. Difference Equ. Appl. 27, No. 11, 1574-1593 (2021). Reviewer: Rui Ferreira (Lisboa) MSC: 26A48 26A33 39A12 39B62 65D15 65Q20 PDF BibTeX XML Cite \textit{R. Dahal} et al., J. Difference Equ. Appl. 27, No. 11, 1574--1593 (2021; Zbl 1485.26010) Full Text: DOI OpenURL
Mert, Raziye; Abdeljawad, Thabet; Peterson, Allan A Sturm-Liouville approach for continuous and discrete Mittag-Leffler kernel fractional operators. (English) Zbl 07440421 Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2417-2434 (2021). MSC: 34A08 26A33 34B24 39A12 34L10 34L15 PDF BibTeX XML Cite \textit{R. Mert} et al., Discrete Contin. Dyn. Syst., Ser. S 14, No. 7, 2417--2434 (2021; Zbl 07440421) Full Text: DOI OpenURL
Cheng, Jin-fa Fractional sum and fractional difference on non-uniform lattices and analogue of Euler and Cauchy beta formulas. (English) Zbl 07439146 Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 420-442 (2021). MSC: 39A13 33C45 33D45 26A33 34K37 PDF BibTeX XML Cite \textit{J.-f. Cheng}, Appl. Math., Ser. B (Engl. Ed.) 36, No. 3, 420--442 (2021; Zbl 07439146) Full Text: DOI OpenURL
Asliyüce, Serkan; Güvenilir, A. Feza New fractional order discrete Grüss type inequality. (English) Zbl 1484.26045 Math. Slovaca 71, No. 1, 33-42 (2021). MSC: 26D15 26A33 35A23 PDF BibTeX XML Cite \textit{S. Asliyüce} and \textit{A. F. Güvenilir}, Math. Slovaca 71, No. 1, 33--42 (2021; Zbl 1484.26045) Full Text: DOI OpenURL
Yuan, Xiaolin; Mo, Lipo; Yu, Yongguang; Ren, Guojian Containment control of fractional discrete-time multi-agent systems with nonconvex constraints. (English) Zbl 07425007 Appl. Math. Comput. 409, Article ID 126378, 12 p. (2021). MSC: 93Cxx 93Axx 39Axx 26Axx 93Bxx PDF BibTeX XML Cite \textit{X. Yuan} et al., Appl. Math. Comput. 409, Article ID 126378, 12 p. (2021; Zbl 07425007) Full Text: DOI OpenURL
Goodrich, Christopher S.; Jonnalagadda, Jagan M. An analysis of polynomial sequences and their application to discrete fractional operators. (English) Zbl 07423075 J. Difference Equ. Appl. 27, No. 7, 1081-1102 (2021). MSC: 11B37 11B83 47B39 26A33 26A48 39A12 39A70 39B62 PDF BibTeX XML Cite \textit{C. S. Goodrich} and \textit{J. M. Jonnalagadda}, J. Difference Equ. Appl. 27, No. 7, 1081--1102 (2021; Zbl 07423075) Full Text: DOI OpenURL
Selvam, George Maria; Alzabut, Jehad; Dhakshinamoorthy, Vignesh; Jonnalagadda, Jagan Mohan; Abodayeh, Kamaleldin Existence and stability of nonlinear discrete fractional initial value problems with application to vibrating eardrum. (English) Zbl 1471.92051 Math. Biosci. Eng. 18, No. 4, 3907-3921 (2021). MSC: 92C10 26A33 35F25 PDF BibTeX XML Cite \textit{G. M. Selvam} et al., Math. Biosci. Eng. 18, No. 4, 3907--3921 (2021; Zbl 1471.92051) Full Text: DOI OpenURL
Al Qurashi, Maysaa; Rashid, Saima; Sultana, Sobia; Ahmad, Hijaz; Gepreel, Khaled A. New formulation for discrete dynamical type inequalities via \(h\)-discrete fractional operator pertaining to nonsingular kernel. (English) Zbl 1476.26014 Math. Biosci. Eng. 18, No. 2, 1794-1812 (2021). MSC: 26D15 26A33 33E12 PDF BibTeX XML Cite \textit{M. Al Qurashi} et al., Math. Biosci. Eng. 18, No. 2, 1794--1812 (2021; Zbl 1476.26014) Full Text: DOI OpenURL
Khan, Zareen A.; Shah, Kamal Discrete fractional inequalities pertaining a fractional sum operator with some applications on time scales. (English) Zbl 1476.26020 J. Funct. Spaces 2021, Article ID 8734535, 8 p. (2021). MSC: 26D15 26A33 26E70 PDF BibTeX XML Cite \textit{Z. A. Khan} and \textit{K. Shah}, J. Funct. Spaces 2021, Article ID 8734535, 8 p. (2021; Zbl 1476.26020) Full Text: DOI OpenURL
Bendoukha, Samir Stabilization and synchronization of discrete-time fractional chaotic systems with non-identical dimensions. (English) Zbl 1472.39024 Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 523-538 (2021). MSC: 39A30 39A33 26A33 PDF BibTeX XML Cite \textit{S. Bendoukha}, Acta Math. Appl. Sin., Engl. Ser. 37, No. 3, 523--538 (2021; Zbl 1472.39024) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Almatroud, A. Othman; Ouannas, Adel; Al-Sawalha, M. Mossa; Grassi, Giuseppe; Pham, Viet-Thanh The effect of Caputo fractional difference operator on a novel game theory model. (English) Zbl 1471.37083 Discrete Contin. Dyn. Syst., Ser. B 26, No. 8, 4549-4565 (2021). MSC: 37N40 39A70 39A13 39A28 26A33 91A25 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Discrete Contin. Dyn. Syst., Ser. B 26, No. 8, 4549--4565 (2021; Zbl 1471.37083) Full Text: DOI OpenURL
Goodrich, Christopher S.; Lyons, Benjamin; Scapellato, Andrea; Velcsov, Mihaela T. Analytical and numerical convexity results for discrete fractional sequential differences with negative lower bound. (English) Zbl 07355111 J. Difference Equ. Appl. 27, No. 3, 317-341 (2021). MSC: 65-XX 26A51 33F05 39A12 65D15 65Q20 39A99 39B62 PDF BibTeX XML Cite \textit{C. S. Goodrich} et al., J. Difference Equ. Appl. 27, No. 3, 317--341 (2021; Zbl 07355111) Full Text: DOI OpenURL
Bravo, Jennifer; Lizama, Carlos; Rueda, Silvia Second and third order forward difference operator: what is in between? (English) Zbl 1467.39012 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 86, 20 p. (2021). MSC: 39A70 39A13 39A12 26A33 PDF BibTeX XML Cite \textit{J. Bravo} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 115, No. 2, Paper No. 86, 20 p. (2021; Zbl 1467.39012) Full Text: DOI OpenURL
Dahal, Rajendra; Goodrich, Christopher S. Theoretical and numerical analysis of monotonicity results for fractional difference operators. (English) Zbl 1471.65219 Appl. Math. Lett. 117, Article ID 107104, 7 p. (2021). MSC: 65Q10 26A33 PDF BibTeX XML Cite \textit{R. Dahal} and \textit{C. S. Goodrich}, Appl. Math. Lett. 117, Article ID 107104, 7 p. (2021; Zbl 1471.65219) Full Text: DOI OpenURL
Li, Ruoxia; Cao, Jinde; Xue, Changfeng; Manivannan, R. Quasi-stability and quasi-synchronization control of quaternion-valued fractional-order discrete-time memristive neural networks. (English) Zbl 07335150 Appl. Math. Comput. 395, Article ID 125851, 13 p. (2021). MSC: 93-XX 39-XX PDF BibTeX XML Cite \textit{R. Li} et al., Appl. Math. Comput. 395, Article ID 125851, 13 p. (2021; Zbl 07335150) Full Text: DOI OpenURL
Haider, Syed Sabyel; Ur Rehman, Mujeeb Ulam-Hyers-Rassias stability and existence of solutions to nonlinear fractional difference equations with multipoint summation boundary condition. (English) Zbl 07552307 Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 2, 589-602 (2020). MSC: 39A30 39A70 34B27 PDF BibTeX XML Cite \textit{S. S. Haider} and \textit{M. Ur Rehman}, Acta Math. Sci., Ser. B, Engl. Ed. 40, No. 2, 589--602 (2020; Zbl 07552307) Full Text: DOI OpenURL
Bas, Erdal; Ozarslan, Ramazan; Yilmazer, Resat Spectral structure and solution of fractional hydrogen atom difference equations. (English) Zbl 1484.81052 AIMS Math. 5, No. 2, 1359-1371 (2020). MSC: 81Q80 26A33 39A70 PDF BibTeX XML Cite \textit{E. Bas} et al., AIMS Math. 5, No. 2, 1359--1371 (2020; Zbl 1484.81052) Full Text: DOI OpenURL
Ali, Karmina K.; Yilmazer, Resat Discrete fractional solutions to the effective mass Schrödinger equation by mean of nabla operator. (English) Zbl 1484.39001 AIMS Math. 5, No. 2, 894-903 (2020). MSC: 39A12 34A08 34N05 PDF BibTeX XML Cite \textit{K. K. Ali} and \textit{R. Yilmazer}, AIMS Math. 5, No. 2, 894--903 (2020; Zbl 1484.39001) Full Text: DOI OpenURL
Jonnalagadda, Jagan Mohan On a nabla fractional boundary value problem with general boundary conditions. (English) Zbl 1485.34040 AIMS Math. 5, No. 1, 204-215 (2020). MSC: 34A08 34B05 34N05 39A12 PDF BibTeX XML Cite \textit{J. M. Jonnalagadda}, AIMS Math. 5, No. 1, 204--215 (2020; Zbl 1485.34040) Full Text: DOI OpenURL
Shen, Jian-Mei; Rashid, Saima; Noor, Muhammad Aslam; Ashraf, Rehana; Chu, Yu-Ming Certain novel estimates within fractional calculus theory on time scales. (English) Zbl 1484.26093 AIMS Math. 5, No. 6, 6073-6086 (2020). MSC: 26D15 26A33 26E70 PDF BibTeX XML Cite \textit{J.-M. Shen} et al., AIMS Math. 5, No. 6, 6073--6086 (2020; Zbl 1484.26093) Full Text: DOI OpenURL
Du, Feifei; Jia, Baoguo Finite time stability of fractional delay difference systems: a discrete delayed Mittag-Leffler matrix function approach. (English) Zbl 07511272 Chaos Solitons Fractals 141, Article ID 110430, 6 p. (2020). MSC: 39-XX 34-XX PDF BibTeX XML Cite \textit{F. Du} and \textit{B. Jia}, Chaos Solitons Fractals 141, Article ID 110430, 6 p. (2020; Zbl 07511272) Full Text: DOI OpenURL
Selvam, A. G. M.; Baleanu, D.; Alzabut, J.; Vignesh, D.; Abbas, S. On Hyers-Ulam Mittag-Leffler stability of discrete fractional Duffing equation with application on inverted pendulum. (English) Zbl 1486.34040 Adv. Difference Equ. 2020, Paper No. 456, 15 p. (2020). MSC: 34A08 26A33 70K20 PDF BibTeX XML Cite \textit{A. G. M. Selvam} et al., Adv. Difference Equ. 2020, Paper No. 456, 15 p. (2020; Zbl 1486.34040) Full Text: DOI OpenURL
Li, Yuqing; He, Xing; Zhang, Wei The fractional difference form of sine chaotification model. (English) Zbl 07501431 Chaos Solitons Fractals 137, Article ID 109774, 9 p. (2020). MSC: 39A13 39A33 26A33 PDF BibTeX XML Cite \textit{Y. Li} et al., Chaos Solitons Fractals 137, Article ID 109774, 9 p. (2020; Zbl 07501431) Full Text: DOI OpenURL
Reunsumrit, Jiraporn; Sitthiwirattham, Thanin Existence results of fractional delta-nabla difference equations via mixed boundary conditions. (English) Zbl 1485.39012 Adv. Difference Equ. 2020, Paper No. 370, 14 p. (2020). MSC: 39A13 26A33 34A08 39A70 PDF BibTeX XML Cite \textit{J. Reunsumrit} and \textit{T. Sitthiwirattham}, Adv. Difference Equ. 2020, Paper No. 370, 14 p. (2020; Zbl 1485.39012) Full Text: DOI OpenURL
Selvam, A. George Maria; Vignesh, D. Nabla fractional extended Lorentz oscillator and its stability. (English) Zbl 07477764 Adv. Differ. Equ. Control Process. 23, No. 2, 151-163 (2020). MSC: 39A13 39A30 26A33 34A08 34C15 PDF BibTeX XML Cite \textit{A. G. M. Selvam} and \textit{D. Vignesh}, Adv. Differ. Equ. Control Process. 23, No. 2, 151--163 (2020; Zbl 07477764) Full Text: DOI OpenURL
Gasri, Ahlem; Ouannas, Adel; Khennaoui, Amina-Aicha; Bendoukha, Samir; Pham, Viet-Thanh On the dynamics and control of fractional chaotic maps with sine terms. (English) Zbl 07446852 Int. J. Nonlinear Sci. Numer. Simul. 21, No. 6, 589-601 (2020). MSC: 26A33 34H10 37D45 PDF BibTeX XML Cite \textit{A. Gasri} et al., Int. J. Nonlinear Sci. Numer. Simul. 21, No. 6, 589--601 (2020; Zbl 07446852) Full Text: DOI OpenURL
Atıcı, Ferhan M.; Nguyen, Ngoc; Dadashova, Kamala; Pedersen, Sarah E.; Koch, Gilbert Pharmacokinetics and pharmacodynamics models of tumor growth and anticancer effects in discrete time. (English) Zbl 1472.92118 Comput. Math. Biophys. 8, No. 1, 114-125 (2020). MSC: 92C45 92C50 39A60 26A33 62P10 PDF BibTeX XML Cite \textit{F. M. Atıcı} et al., Comput. Math. Biophys. 8, No. 1, 114--125 (2020; Zbl 1472.92118) Full Text: DOI OpenURL
Mesmouli, Mouataz Billah; Ardjouni, Abdelouaheb; Djoudi, Ahcene Nonlinear neutral Caputo-fractional difference equations with applications to Lotka-Volterra neutral model. (English) Zbl 07387216 Facta Univ., Ser. Math. Inf. 35, No. 5, 1475-1488 (2020). MSC: 39A12 PDF BibTeX XML Cite \textit{M. B. Mesmouli} et al., Facta Univ., Ser. Math. Inf. 35, No. 5, 1475--1488 (2020; Zbl 07387216) Full Text: DOI OpenURL
Rashid, Saima; Ahmad, Hijaz; Khalid, Aasma; Chu, Yu-Ming On discrete fractional integral inequalities for a class of functions. (English) Zbl 1453.26029 Complexity 2020, Article ID 8845867, 13 p. (2020). MSC: 26D15 26A33 PDF BibTeX XML Cite \textit{S. Rashid} et al., Complexity 2020, Article ID 8845867, 13 p. (2020; Zbl 1453.26029) Full Text: DOI OpenURL
Lizama, Carlos; Murillo-Arcila, Marina; Peris, Alfred Nonlocal operators are chaotic. (English) Zbl 07284329 Chaos 30, No. 10, 103126, 8 p. (2020). MSC: 47-XX PDF BibTeX XML Cite \textit{C. Lizama} et al., Chaos 30, No. 10, 103126, 8 p. (2020; Zbl 07284329) Full Text: DOI OpenURL
Ouannas, Adel; Khennaoui, Amina-Aicha; Momani, Shaher; Pham, Viet-Thanh The discrete fractional Duffing system: chaos, 0-1 test, \(C_0\) complexity, entropy, and control. (English) Zbl 1445.39004 Chaos 30, No. 8, 083131, 13 p. (2020). MSC: 39A12 39-08 39A28 39A33 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Chaos 30, No. 8, 083131, 13 p. (2020; Zbl 1445.39004) Full Text: DOI OpenURL
Cabada, Alberto; Dimitrov, Nikolay Nontrivial solutions of non-autonomous Dirichlet fractional discrete problems. (English) Zbl 07268215 Fract. Calc. Appl. Anal. 23, No. 4, 980-995 (2020). MSC: 39A27 39A13 PDF BibTeX XML Cite \textit{A. Cabada} and \textit{N. Dimitrov}, Fract. Calc. Appl. Anal. 23, No. 4, 980--995 (2020; Zbl 07268215) Full Text: DOI OpenURL
Meganathan, M.; Abdeljawad, Thabet; Xavier, G. Britto Antony; Jarad, Fahd \(n\)-dimensional fractional frequency Laplace transform by the inverse difference operator. (English) Zbl 1459.26013 Math. Probl. Eng. 2020, Article ID 6529698, 11 p. (2020). MSC: 26A33 39A12 44A10 PDF BibTeX XML Cite \textit{M. Meganathan} et al., Math. Probl. Eng. 2020, Article ID 6529698, 11 p. (2020; Zbl 1459.26013) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Ouannas, Adel; Odibat, Zaid; Pham, Viet-Thanh; Grassi, Giuseppe On the three-dimensional fractional-order Hénon map with Lorenz-like attractors. (English) Zbl 1452.37043 Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050217, 16 p. (2020). MSC: 37D45 37C70 39A12 26A33 39A70 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 30, No. 11, Article ID 2050217, 16 p. (2020; Zbl 1452.37043) Full Text: DOI OpenURL
Ouannas, Adel; Khennaoui, Amina-Aicha; Bendoukha, Samir; Wang, Zhen; Pham, Viet-Thanh The dynamics and control of the fractional forms of some rational chaotic maps. (English) Zbl 1450.37092 J. Syst. Sci. Complex. 33, No. 3, 584-603 (2020). MSC: 37N35 37D45 26A33 PDF BibTeX XML Cite \textit{A. Ouannas} et al., J. Syst. Sci. Complex. 33, No. 3, 584--603 (2020; Zbl 1450.37092) Full Text: DOI OpenURL
Anh, Pham The; Babiarz, Artur; Czornik, Adam; Kitzing, Konrad; Niezabitowski, Michał; Siegmund, Stefan; Trostorff, Sascha; Tuan, Hoang The A Hilbert space approach to fractional difference equations. (English) Zbl 1442.39006 Bohner, Martin (ed.) et al., Difference equations and discrete dynamical systems with applications. ICDEA 24, Dresden, Germany, May 21–25, 2018. Proceedings of the 24th international conference on difference equations and applications. Cham: Springer. Springer Proc. Math. Stat. 312, 115-131 (2020). MSC: 39A13 39A12 26A33 PDF BibTeX XML Cite \textit{P. T. Anh} et al., Springer Proc. Math. Stat. 312, 115--131 (2020; Zbl 1442.39006) Full Text: DOI arXiv OpenURL
Suwan, Iyad; Owies, Shahd; Abussa, Muayad; Abdeljawad, Thabet Monotonicity analysis of fractional proportional differences. (English) Zbl 1459.26016 Discrete Dyn. Nat. Soc. 2020, Article ID 4867927, 11 p. (2020). MSC: 26A33 39A70 PDF BibTeX XML Cite \textit{I. Suwan} et al., Discrete Dyn. Nat. Soc. 2020, Article ID 4867927, 11 p. (2020; Zbl 1459.26016) Full Text: DOI OpenURL
Goodrich, Christopher S.; Lyons, Benjamin Positivity and monotonicity results for triple sequential fractional differences via convolution. (English) Zbl 1446.39003 Analysis, München 40, No. 2, 89-103 (2020). Reviewer: S. L. Kalla (Ballwin) MSC: 39A12 39A70 39A13 39B62 44A35 26A48 PDF BibTeX XML Cite \textit{C. S. Goodrich} and \textit{B. Lyons}, Analysis, München 40, No. 2, 89--103 (2020; Zbl 1446.39003) Full Text: DOI OpenURL
Goodrich, Christopher; Lizama, Carlos A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. (English) Zbl 07202576 Isr. J. Math. 236, No. 2, 533-589 (2020). MSC: 47Axx 43Axx 26Axx PDF BibTeX XML Cite \textit{C. Goodrich} and \textit{C. Lizama}, Isr. J. Math. 236, No. 2, 533--589 (2020; Zbl 07202576) Full Text: DOI OpenURL
Delfín-Prieto, Sergio Miguel; Martínez-Guerra, Rafael A Mittag-Leffler fractional-order difference observer. (English) Zbl 1451.93137 J. Franklin Inst. 357, No. 5, 2997-3018 (2020). MSC: 93B53 93D05 93C10 93C30 26A33 PDF BibTeX XML Cite \textit{S. M. Delfín-Prieto} and \textit{R. Martínez-Guerra}, J. Franklin Inst. 357, No. 5, 2997--3018 (2020; Zbl 1451.93137) Full Text: DOI OpenURL
Wu, Hongwu Asymptotic behavior of solutions of fractional nabla difference equations. (English) Zbl 1436.39008 Appl. Math. Lett. 105, Article ID 106302, 6 p. (2020). MSC: 39A13 39A22 39A12 26A33 PDF BibTeX XML Cite \textit{H. Wu}, Appl. Math. Lett. 105, Article ID 106302, 6 p. (2020; Zbl 1436.39008) Full Text: DOI OpenURL
Gu, Yajuan; Wang, Hu; Yu, Yongguang Synchronization for fractional-order discrete-time neural networks with time delays. (English) Zbl 1433.34070 Appl. Math. Comput. 372, Article ID 124995, 17 p. (2020). MSC: 34D06 34A08 34H05 39A12 92B20 93B52 PDF BibTeX XML Cite \textit{Y. Gu} et al., Appl. Math. Comput. 372, Article ID 124995, 17 p. (2020; Zbl 1433.34070) Full Text: DOI OpenURL
Ozturk, Okkes; Yilmazer, Resat Solutions of the radial Schrödinger equation in hypergeometric and discrete fractional forms. (English) Zbl 1487.39005 Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 833-839 (2019). MSC: 39A12 26A33 35J10 47B39 PDF BibTeX XML Cite \textit{O. Ozturk} and \textit{R. Yilmazer}, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 68, No. 1, 833--839 (2019; Zbl 1487.39005) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Ouannas, Adel; Bendoukha, Samir; Grassi, Giuseppe; Wang, Xiong; Pham, Viet-Thanh; Alsaadi, Fawaz E. Chaos, control, and synchronization in some fractional-order difference equations. (English) Zbl 1485.39028 Adv. Difference Equ. 2019, Paper No. 412, 23 p. (2019). MSC: 39A33 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Adv. Difference Equ. 2019, Paper No. 412, 23 p. (2019; Zbl 1485.39028) Full Text: DOI OpenURL
Abdeljawad, Thabet Fractional difference operators with discrete generalized Mittag-Leffler kernels. (English) Zbl 1448.39032 Chaos Solitons Fractals 126, 315-324 (2019). MSC: 39A70 39A12 26A33 44A10 PDF BibTeX XML Cite \textit{T. Abdeljawad}, Chaos Solitons Fractals 126, 315--324 (2019; Zbl 1448.39032) Full Text: DOI OpenURL
Ouannas, Adel; Khennaoui, Amina-Aicha; Odibat, Zaid; Pham, Viet-Thanh; Grassi, Giuseppe On the dynamics, control and synchronization of fractional-order Ikeda map. (English) Zbl 1448.93186 Chaos Solitons Fractals 123, 108-115 (2019). MSC: 93C55 37D45 39A33 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Chaos Solitons Fractals 123, 108--115 (2019; Zbl 1448.93186) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Ouannas, Adel; Bendoukha, Samir; Grassi, Giuseppe; Lozi, René Pierre; Pham, Viet-Thanh On fractional-order discrete-time systems: chaos, stabilization and synchronization. (English) Zbl 1451.37052 Chaos Solitons Fractals 119, 150-162 (2019). MSC: 37D45 93C55 39A33 39A30 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Chaos Solitons Fractals 119, 150--162 (2019; Zbl 1451.37052) Full Text: DOI OpenURL
Dahal, Rajendra; Goodrich, Christopher S. A uniformly sharp convexity result for discrete fractional sequential differences. (English) Zbl 1434.26008 Rocky Mt. J. Math. 49, No. 8, 2571-2586 (2019). MSC: 26A33 26A51 39A70 39B62 39A12 PDF BibTeX XML Cite \textit{R. Dahal} and \textit{C. S. Goodrich}, Rocky Mt. J. Math. 49, No. 8, 2571--2586 (2019; Zbl 1434.26008) Full Text: DOI Euclid OpenURL
Conejero, J. Alberto; Lizama, Carlos; Mira-Iglesias, Ainara; Rodero, Cristóbal Visibility graphs of fractional Wu-Baleanu time series. (English) Zbl 1429.37046 J. Difference Equ. Appl. 25, No. 9-10, 1321-1331 (2019). MSC: 37M10 26A33 94A24 PDF BibTeX XML Cite \textit{J. A. Conejero} et al., J. Difference Equ. Appl. 25, No. 9--10, 1321--1331 (2019; Zbl 1429.37046) Full Text: DOI OpenURL
Abdeljawad, Thabet; Mert, Raziye; Peterson, Allan Sturm Liouville equations in the frame of fractional operators with exponential kernels and their discrete versions. (English) Zbl 1429.34007 Quaest. Math. 42, No. 9, 1271-1289 (2019). MSC: 34A08 26A33 34B24 39A12 PDF BibTeX XML Cite \textit{T. Abdeljawad} et al., Quaest. Math. 42, No. 9, 1271--1289 (2019; Zbl 1429.34007) Full Text: DOI arXiv OpenURL
Dahal, Rajendra; Goodrich, Christopher S. Mixed order monotonicity results for sequential fractional nabla differences. (English) Zbl 1421.39006 J. Difference Equ. Appl. 25, No. 6, 837-854 (2019). MSC: 39A70 26A33 39A12 PDF BibTeX XML Cite \textit{R. Dahal} and \textit{C. S. Goodrich}, J. Difference Equ. Appl. 25, No. 6, 837--854 (2019; Zbl 1421.39006) Full Text: DOI OpenURL
Liu, Xiang; Peterson, Allan; Jia, Baoguo; Erbe, Lynn A generalized \(h\)-fractional Gronwall’s inequality and its applications for nonlinear \(h\)-fractional difference systems with ‘maxima’. (English) Zbl 1421.39002 J. Difference Equ. Appl. 25, No. 6, 815-836 (2019). MSC: 39A12 39A70 39A22 26A33 PDF BibTeX XML Cite \textit{X. Liu} et al., J. Difference Equ. Appl. 25, No. 6, 815--836 (2019; Zbl 1421.39002) Full Text: DOI OpenURL
Goodrich, Christopher S. Sharp monotonicity results for fractional nabla sequential differences. (English) Zbl 1422.39022 J. Difference Equ. Appl. 25, No. 6, 801-814 (2019). MSC: 39A12 26A33 26A48 39A70 39B62 PDF BibTeX XML Cite \textit{C. S. Goodrich}, J. Difference Equ. Appl. 25, No. 6, 801--814 (2019; Zbl 1422.39022) Full Text: DOI OpenURL
Ahrendt, Kevin; Kissler, Cameron Green’s function for higher-order boundary value problems involving a Nabla Caputo fractional operator. (English) Zbl 1434.39014 J. Difference Equ. Appl. 25, No. 6, 788-800 (2019). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 39A70 39A27 26A33 PDF BibTeX XML Cite \textit{K. Ahrendt} and \textit{C. Kissler}, J. Difference Equ. Appl. 25, No. 6, 788--800 (2019; Zbl 1434.39014) Full Text: DOI arXiv OpenURL
Xu, Jiafa; Goodrich, Christopher S.; Cui, Yujun Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. (English) Zbl 1417.39030 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 1343-1358 (2019). MSC: 39A14 26A33 PDF BibTeX XML Cite \textit{J. Xu} et al., Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 113, No. 2, 1343--1358 (2019; Zbl 1417.39030) Full Text: DOI OpenURL
Ouannas, Adel; Khennaoui, Amina-Aicha; Bendoukha, Samir; Grassi, Giuseppe On the dynamics and control of a fractional form of the discrete double scroll. (English) Zbl 1423.39025 Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950078, 10 p. (2019). MSC: 39A60 39A10 39A28 39A30 93C55 26A33 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 29, No. 6, Article ID 1950078, 10 p. (2019; Zbl 1423.39025) Full Text: DOI OpenURL
Ouannas, Adel; Khennaoui, Amina-Aicha; Grassi, Giuseppe; Bendoukha, Samir On chaos in the fractional-order Grassi-Miller map and its control. (English) Zbl 1422.37074 J. Comput. Appl. Math. 358, 293-305 (2019). MSC: 37N35 26A33 93C55 37C05 PDF BibTeX XML Cite \textit{A. Ouannas} et al., J. Comput. Appl. Math. 358, 293--305 (2019; Zbl 1422.37074) Full Text: DOI OpenURL
Baleanu, Dumitru; Alqurashi, Maysaa; Murugesan, Meganathan; Gnanaprakasam, Britto Antony Xavier One dimensional fractional frequency Fourier transform by inverse difference operator. (English) Zbl 1459.39009 Adv. Difference Equ. 2019, Paper No. 212, 10 p. (2019). MSC: 39A13 39A70 26A33 39A12 34A08 44A35 42A85 PDF BibTeX XML Cite \textit{D. Baleanu} et al., Adv. Difference Equ. 2019, Paper No. 212, 10 p. (2019; Zbl 1459.39009) Full Text: DOI OpenURL
Jia, Baoguo; Erbe, Lynn; Peterson, Allan Asymptotic behavior of solutions of fractional nabla \(q\)-difference equations. (English) Zbl 1414.39003 Georgian Math. J. 26, No. 1, 21-28 (2019). MSC: 39A13 39A30 33D05 26A33 39A70 PDF BibTeX XML Cite \textit{B. Jia} et al., Georgian Math. J. 26, No. 1, 21--28 (2019; Zbl 1414.39003) Full Text: DOI OpenURL
Jouini, Lotfi; Ouannas, Adel; Khennaoui, Amina-Aicha; Wang, Xiong; Grassi, Giuseppe; Pham, Viet-Thanh The fractional form of a new three-dimensional generalized Hénon map. (English) Zbl 1459.34023 Adv. Difference Equ. 2019, Paper No. 122, 12 p. (2019). MSC: 34A08 34D06 34H10 PDF BibTeX XML Cite \textit{L. Jouini} et al., Adv. Difference Equ. 2019, Paper No. 122, 12 p. (2019; Zbl 1459.34023) Full Text: DOI OpenURL
Abadías, Luciano; Lizama, Carlos; Miana, Pedro J.; Velasco, M. Pilar On well-posedness of vector-valued fractional differential-difference equations. (English) Zbl 1411.35267 Discrete Contin. Dyn. Syst. 39, No. 5, 2679-2708 (2019). MSC: 35R11 39A14 47D06 PDF BibTeX XML Cite \textit{L. Abadías} et al., Discrete Contin. Dyn. Syst. 39, No. 5, 2679--2708 (2019; Zbl 1411.35267) Full Text: DOI arXiv OpenURL
Ganji, M.; Gharari, F. The discrete delta and nabla Mittag-Leffler distributions. (English) Zbl 07405713 Commun. Stat., Theory Methods 47, No. 18, 4568-4589 (2018). MSC: 62-XX 60E05 93C70 26A33 39A12 PDF BibTeX XML Cite \textit{M. Ganji} and \textit{F. Gharari}, Commun. Stat., Theory Methods 47, No. 18, 4568--4589 (2018; Zbl 07405713) Full Text: DOI OpenURL
Suwan, Iyad; Abdeljawad, Thabet; Jarad, Fahd Monotonicity analysis for nabla h-discrete fractional Atangana-Baleanu differences. (English) Zbl 1442.39005 Chaos Solitons Fractals 117, 50-59 (2018). MSC: 39A12 34N05 PDF BibTeX XML Cite \textit{I. Suwan} et al., Chaos Solitons Fractals 117, 50--59 (2018; Zbl 1442.39005) Full Text: DOI OpenURL
Abdeljawad, Thabet Different type kernel \(h\)-fractional differences and their fractional \(h\)-sums. (English) Zbl 1442.34139 Chaos Solitons Fractals 116, 146-156 (2018). MSC: 34N05 39A12 34A08 PDF BibTeX XML Cite \textit{T. Abdeljawad}, Chaos Solitons Fractals 116, 146--156 (2018; Zbl 1442.34139) Full Text: DOI OpenURL
Yilmazer, Resat; Inc, Mustafa; Bayram, Mustafa On discrete fractional solutions of non-Fuchsian differential equations. (English) Zbl 1425.34030 Mathematics 6, No. 12, Paper No. 308, 9 p. (2018). MSC: 34A08 PDF BibTeX XML Cite \textit{R. Yilmazer} et al., Mathematics 6, No. 12, Paper No. 308, 9 p. (2018; Zbl 1425.34030) Full Text: DOI OpenURL
Ouannas, Adel; Khennaoui, Amina-Aicha; Grassi, Giuseppe; Bendoukha, Samir On the \(Q\)-\(S\) chaos synchronization of fractional-order discrete-time systems: general method and examples. (English) Zbl 1435.39003 Discrete Dyn. Nat. Soc. 2018, Article ID 2950357, 8 p. (2018). MSC: 39A33 PDF BibTeX XML Cite \textit{A. Ouannas} et al., Discrete Dyn. Nat. Soc. 2018, Article ID 2950357, 8 p. (2018; Zbl 1435.39003) Full Text: DOI OpenURL
Khennaoui, Amina-Aicha; Ouannas, Adel; Bendoukha, Samir; Grassi, Giuseppe; Wang, Xiong; Pham, Viet-Thanh Generalized and inverse generalized synchronization of fractional-order discrete-time chaotic systems with non-identical dimensions. (English) Zbl 1448.34020 Adv. Difference Equ. 2018, Paper No. 303, 14 p. (2018). MSC: 34A08 34H10 34D06 PDF BibTeX XML Cite \textit{A.-A. Khennaoui} et al., Adv. Difference Equ. 2018, Paper No. 303, 14 p. (2018; Zbl 1448.34020) Full Text: DOI OpenURL
Suwan, Iyad; Owies, Shahd; Abdeljawad, Thabet Monotonicity results for \(h\)-discrete fractional operators and application. (English) Zbl 1446.39022 Adv. Difference Equ. 2018, Paper No. 207, 17 p. (2018). MSC: 39A70 39A13 26A33 PDF BibTeX XML Cite \textit{I. Suwan} et al., Adv. Difference Equ. 2018, Paper No. 207, 17 p. (2018; Zbl 1446.39022) Full Text: DOI OpenURL
Xu, Jiafa; O’Regan, Donal Existence and uniqueness of solutions for a first-order discrete fractional boundary value problem. (English) Zbl 1401.39008 Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 4, 1005-1016 (2018). MSC: 39A12 34B18 PDF BibTeX XML Cite \textit{J. Xu} and \textit{D. O'Regan}, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 112, No. 4, 1005--1016 (2018; Zbl 1401.39008) Full Text: DOI OpenURL
Jia, Baoguo; Liu, Xiang; Du, Feifei; Wang, Mei The solution of a new Caputo-like fractional \(h\)-difference equation. (English) Zbl 1402.39006 Rocky Mt. J. Math. 48, No. 5, 1607-1630 (2018). Reviewer: James Adedayo Oguntuase (Abeokuta) MSC: 39A13 39A12 39A70 PDF BibTeX XML Cite \textit{B. Jia} et al., Rocky Mt. J. Math. 48, No. 5, 1607--1630 (2018; Zbl 1402.39006) Full Text: DOI Euclid OpenURL
Goodrich, Christopher S. Monotonicity and non-monotonicity results for sequential fractional delta differences of mixed order. (English) Zbl 1390.39062 Positivity 22, No. 2, 551-573 (2018). MSC: 39A70 26A48 26A33 39A12 PDF BibTeX XML Cite \textit{C. S. Goodrich}, Positivity 22, No. 2, 551--573 (2018; Zbl 1390.39062) Full Text: DOI OpenURL
Lizama, Carlos; Murillo-Arcila, Marina Well posedness for semidiscrete fractional Cauchy problems with finite delay. (English) Zbl 06867165 J. Comput. Appl. Math. 339, 356-366 (2018). MSC: 35-XX 47-XX PDF BibTeX XML Cite \textit{C. Lizama} and \textit{M. Murillo-Arcila}, J. Comput. Appl. Math. 339, 356--366 (2018; Zbl 06867165) Full Text: DOI Link OpenURL
Abdeljawad, Thabet; Al-Mdallal, Qasem M. Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality. (English) Zbl 1472.39006 J. Comput. Appl. Math. 339, 218-230 (2018). Reviewer: Raghib Abu-Saris (Edmonton) MSC: 39A12 39A13 39A27 26A33 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{Q. M. Al-Mdallal}, J. Comput. Appl. Math. 339, 218--230 (2018; Zbl 1472.39006) Full Text: DOI OpenURL
Edelman, Mark Universality in systems with power-law memory and fractional dynamics. (English) Zbl 1386.37082 Edelman, Mark (ed.) et al., Chaotic, fractional, and complex dynamics: new insights and perspectives. Cham: Springer (ISBN 978-3-319-68108-5/hbk; 978-3-319-68109-2/ebook). Springer: Complexity; Understanding Complex Systems, 147-171 (2018). MSC: 37N25 34A08 26A33 70K55 PDF BibTeX XML Cite \textit{M. Edelman}, in: Chaotic, fractional, and complex dynamics: new insights and perspectives. Cham: Springer. 147--171 (2018; Zbl 1386.37082) Full Text: DOI arXiv OpenURL
Abdeljawad, Thabet; Abdalla, Bahaaeldin Monotonicity results for delta and nabla Caputo and Riemann fractional differences via dual identities. (English) Zbl 07418384 Filomat 31, No. 12, 3671-3683 (2017). MSC: 39A22 26A33 39A99 39A12 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{B. Abdalla}, Filomat 31, No. 12, 3671--3683 (2017; Zbl 07418384) Full Text: DOI arXiv OpenURL
Ganji, Masoud; Gharari, Fatemeh An application of discrete fractional calculus in statistics. (English) Zbl 1471.60019 Rev. Invest. Oper. 38, No. 3, 272-280 (2017). MSC: 60E05 26A33 PDF BibTeX XML Cite \textit{M. Ganji} and \textit{F. Gharari}, Rev. Invest. Oper. 38, No. 3, 272--280 (2017; Zbl 1471.60019) Full Text: Link OpenURL
Ozturk, Okkes A study of \(\nabla\)-discrete fractional calculus operator on the radial Schrödinger equation for some physical potentials. (English) Zbl 1423.34015 Quaest. Math. 40, No. 7, 879-889 (2017). MSC: 34A08 39A70 47B39 PDF BibTeX XML Cite \textit{O. Ozturk}, Quaest. Math. 40, No. 7, 879--889 (2017; Zbl 1423.34015) Full Text: DOI OpenURL
Wu, Guo-Cheng; Baleanu, Dumitru; Luo, Wei-Hua Lyapunov functions for Riemann-Liouville-like fractional difference equations. (English) Zbl 1426.39010 Appl. Math. Comput. 314, 228-236 (2017). MSC: 39A13 34A08 PDF BibTeX XML Cite \textit{G.-C. Wu} et al., Appl. Math. Comput. 314, 228--236 (2017; Zbl 1426.39010) Full Text: DOI OpenURL
Boulares, Hamid; Ardjouni, Abdelouaheb; Laskri, Yamina Existence and uniqueness of solutions for nonlinear fractional nabla difference systems with initial conditions. (English) Zbl 1424.39046 Fract. Differ. Calc. 7, No. 2, 247-263 (2017). MSC: 39A70 39A23 47H10 PDF BibTeX XML Cite \textit{H. Boulares} et al., Fract. Differ. Calc. 7, No. 2, 247--263 (2017; Zbl 1424.39046) Full Text: DOI OpenURL
Shukla, M. K.; Sharma, B. B. Stabilization of fractional order discrete chaotic systems. (English) Zbl 1406.39008 Azar, Ahmad Taher (ed.) et al., Fractional order control and synchronization of chaotic systems. Cham: Springer (ISBN 978-3-319-50248-9/hbk; 978-3-319-50249-6/ebook). Studies in Computational Intelligence 688, 431-445 (2017). MSC: 39A12 39A33 26A33 34A08 PDF BibTeX XML Cite \textit{M. K. Shukla} and \textit{B. B. Sharma}, Stud. Comput. Intell. 688, 431--445 (2017; Zbl 1406.39008) Full Text: DOI OpenURL
Ghorbanian, Vahid; Rezapour, Shahram On a system of fractional finite difference inclusions. (English) Zbl 1444.39008 Adv. Difference Equ. 2017, Paper No. 325, 14 p. (2017). MSC: 39A13 39A12 34A60 34A08 26A33 PDF BibTeX XML Cite \textit{V. Ghorbanian} and \textit{S. Rezapour}, Adv. Difference Equ. 2017, Paper No. 325, 14 p. (2017; Zbl 1444.39008) Full Text: DOI OpenURL
Abdeljawad, Thabet; Baleanu, Dumitru Monotonicity results for fractional difference operators with discrete exponential kernels. (English) Zbl 1422.39048 Adv. Difference Equ. 2017, Paper No. 78, 9 p. (2017). MSC: 39A70 26A33 39A12 PDF BibTeX XML Cite \textit{T. Abdeljawad} and \textit{D. Baleanu}, Adv. Difference Equ. 2017, Paper No. 78, 9 p. (2017; Zbl 1422.39048) Full Text: DOI OpenURL