×

New trends in general variational inequalities. (English) Zbl 1460.49007

Summary: It is well known that general variational inequalities provide us with a unified, natural, novel and simple framework to study a wide class of unrelated problems, which arise in pure and applied sciences. In this paper, we present a number of new and known numerical techniques for solving general variational inequalities and equilibrium problems using various techniques including projection, Wiener-Hopf equations, dynamical systems, the auxiliary principle and the penalty function. General variational-like inequalities are introduced and investigated. Properties of higher order strongly general convex functions have been discussed. The auxiliary principle technique is used to suggest and analyze some iterative methods for solving higher order general variational inequalities. Some new classes of strongly exponentially general convex functions are introduced and discussed. Our proofs of convergence are very simple as compared with other methods. Our results present a significant improvement of previously known methods for solving variational inequalities and related optimization problems. Since the general variational inequalities include (quasi) variational inequalities and (quasi) implicit complementarity problems as special cases, these results continue to hold for these problems. Some numerical results are included to illustrate the efficiency of the proposed methods. Several open problems have been suggested for further research in these areas.

MSC:

49J40 Variational inequalities
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Alirezaei, G.; Mazhar, R., On exponentially concave functions and their impact in information theory, J. Inform. Theory Appl., 9, 5, 265-274 (2018)
[2] Antczak, T., On \((p,r)\)-invex sets and functions, J. Math. Anal. Appl., 263, 355-379 (2001) · Zbl 1051.90018
[3] Al-Said, A. E., A family of numerical methods for solving third-order boundary value problems, Int. J. Math., 1, 367-375 (2002) · Zbl 0987.65071
[4] Al-Said, E. A.; Noor, M. A.; Khalifa, A. K., Finite difference schemes for variational inequalities, J. Optim. Theory Appl., 89, 453-459 (1996) · Zbl 0848.49007
[5] Al-Said, E. A.; Noor, M. A.; Rassias, T. M., Numerical solutions of third-order obstacle problems, Int. J. Comput. Math., 69, 75-84 (1998) · Zbl 0905.65074
[6] Alvarez, F., On the minimization property of a second order dissipative system in Hilbert space, SIAM J. Control Optim., 38, 1102-1119 (2000) · Zbl 0954.34053
[7] Alvarez, F.; Attouch, H., An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-Valued Anal., 9, 3-11 (2001) · Zbl 0991.65056
[8] Attouch, H.; Alvarez, F., The heavy ball with friction dynamical system for convex constrained minimization problems, Lect. Notes Econ. Math. Syst., 481, 25-35 (2000) · Zbl 0980.90062
[9] Avriel, M., r-Convex functions, Math. Program., 2, 309-323 (1972) · Zbl 0249.90063
[10] Avriel, M., Solution of certain nonlinear programs involving r-convex functions, J. Optim. Theory Appl., 11, 20, 159 (1973) · Zbl 0238.90061
[11] Awan, M. U.; Noor, M. A.; Mishra, V. N.; Noor, K. I., Some characterizations of general preinvex functions, I, J. Anal. Appl., 15, 1, 46-56 (2017) · Zbl 1378.26006
[12] Baiocchi, C.; Capelo, A., Variational and Quasi-Variational Inequalities (1984), New York: Wiley, New York · Zbl 1308.49003
[13] Batool, S.; Noor, M. A.; Noor, K. I., Absolute value variational inequalities and dynamical systems, Int. J. Math. Anal., 18, 3, 337-355 (2020)
[14] Ben-Isreal, A.; Mond, B., What is invexity?, J. Aust. Math. Soc. Ser. B, 28, 1, 1-9 (1986) · Zbl 0603.90119
[15] Bensoussan, A.; Lions, L., Applications des inequations variationelles en controle stochastique (1978), Paris: Dunod, Paris · Zbl 0411.49002
[16] Bernstein, S. N., Sur les fonctions absolument monotones, Acta Math., 52, 1-66 (1929) · JFM 55.0142.07
[17] Bertsekas, D. P.; Tsitsiklis, J., Parallel and Distributed Computation: Numerical Methods (1989), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0743.65107
[18] Bloach, M. I.; Noor, M. A., Perturbed mixed variational-like inequalities, AIMS Math., 5, 3, 2153-2162 (2019) · Zbl 1484.49012
[19] Blum, E.; Oettli, W., From optimization adn variational inequalities to equilibrium problems, Math. Stud., 63, 123-145 (1994) · Zbl 0888.49007
[20] Burke, J. V.; More, J. J., On the identification of active constraints, SIAM J. Numer. Anal., 25, 1197-1211 (1988) · Zbl 0662.65052
[21] Bynum, W. L., Weak parallelogram laws for Banach spaces, Can. Math. Bull., 19, 269-275 (1976) · Zbl 0347.46015
[22] Chan, P.; Pang, J. S., The generalized quasi-variational inequality problem, Math. Oper. Res., 7, 211-222 (1982) · Zbl 0502.90080
[23] Cheng, R.; Harris, C. B., Duality of the weak parallelogram laws on Banach spaces, J. Math. Anal. Appl., 404, 64-70 (2013) · Zbl 1304.46016
[24] Cheng, R.; Ross, W. T., Weak parallelogram laws on Banach spaces and applications to prediction, Period. Math. Hung., 71, 45-58 (2015) · Zbl 1363.46013
[25] Cheng, R.; Mashreghi, J.; Ross, W. T., Optimal weak parallelogram constants for \(L_p\) space, Math. Inequal. Appl., 21, 4, 1047-1058 (2018) · Zbl 1412.46029
[26] Clarke, F. H.; Ledyaev, Y. S.; Wolenski, P. R., Nonsmooth Analysis and Control Theory (1998), Berlin: Springer, Berlin · Zbl 1047.49500
[27] Cottle, R. W.; Pang, J. S.; Stone, R. E., The Linear Complementarity Problem (1992), New York: Academic Press, New York · Zbl 0757.90078
[28] Crank, J., Free and Moving Boundary Problems (1984), Oxford: Clarendon Press, Oxford · Zbl 0547.35001
[29] Cristescu, G.; Lupsa, L., Non-connected Convexities and Applications (2002), Dordrecht: Kluwer Academic, Dordrecht · Zbl 1037.52008
[30] Dafermos, S., Sensitivity analysis in variational inequalities, Math. Oper. Res., 13, 421-434 (1988) · Zbl 0674.49007
[31] Demyanov, V. F.; Stavroulakis, G. E.; Polyakova, L. N.; Panagiotoulos, P. D., Quasidifferentiability and Nonsmooth Modeling in Mechanics, Engineering and Economics (1996), Boston: Kluwer Academic, Boston · Zbl 1076.49500
[32] Dietrich, H., Optimal control problems for certain quasi variational inequalities, Optimization, 49, 67-93 (2001) · Zbl 0973.49004
[33] Dietrich, H.: Optimal control problems for general variational inequalities. Preprint (2003)
[34] Dong, J.; Zhang, D.; Nagurney, A., A projected dynamical systems model of general financial equilibrium with stability analysis, Math. Comput. Model., 24, 2, 35-44 (1996) · Zbl 0858.90020
[35] Dupuis, P.; Nagurney, A., Dynamical systems and variational inequalities, Ann. Oper. Res., 44, 19-42 (1993) · Zbl 0785.93044
[36] Duvaut, G.; Lions, J. L., Inequalities in Mechanics and Physics (1976), Berlin: Springer, Berlin · Zbl 0331.35002
[37] Ekland, I.; Temam, R., Convex Analysis and Variational Problems (1976), Amsterdam: North-Holland, Amsterdam · Zbl 0322.90046
[38] Fichera, G.: Problemi elastostatici con vincoli unilaterali: il problema di Signorini con ambique condizione al contorno. Atti. Acad. Naz. Lincei. Mem. Cl. Sci. Nat. Sez. Ia 7(8), 91-140 (1963-1964) · Zbl 0146.21204
[39] Filippov, V. M., Variational Principles for Nonpotential Operators (1989), Providence: Am. Math. Soc., Providence · Zbl 0682.35006
[40] Friesz, T. L.; Bernstein, D. H.; Mehta, N. J.; Ganjliazadeh, S., Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42, 1120-1136 (1994) · Zbl 0823.90037
[41] Friesz, T. L.; Bernstein, D. H.; Stough, R., Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Transp. Sci., 30, 14-31 (1996) · Zbl 0849.90061
[42] Fukushima, M., Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53, 99-110 (1992) · Zbl 0756.90081
[43] Fulga, C.; Preda, V., Nonlinear programming with \(\varphi \)-preinvex and local \(\varphi \)-preinvex functions, Eur. J. Oper. Res., 192, 737-743 (2009) · Zbl 1157.90537
[44] Giannessi, F.; Maugeri, A., Variational Inequalities and Network Equilibrium Problems (1995), New York: Plenum Press, New York · Zbl 0834.00044
[45] Giannessi, F.; Maugeri, A.; Pardalos, P. M., Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models (2001), Dordrecht: Kluwer Academic, Dordrecht · Zbl 0992.49001
[46] Glowinski, G., Numerical Methods for Nonlinear Variational Problems (1984), Berlin: Springer, Berlin · Zbl 0536.65054
[47] Glowinski, R.; Lions, J. J.; Tremolieres, R., Numerical Analysis of Variational Inequalities (1981), Amsterdam: North-Holland, Amsterdam · Zbl 0463.65046
[48] Goeleven, D.; Mantague, D., Well-posed hemivariational inequalities, Numer. Funct. Anal. Optim., 16, 909-921 (1995) · Zbl 0848.49013
[49] Han, D.; Lo, H. K., Two new self-adaptive projection methods for variational inequality problems, Comput. Math. Appl., 43, 1529-1537 (2002) · Zbl 1012.65064
[50] Hanson, M. A., On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl., 80, 545-550 (1980) · Zbl 0463.90080
[51] Harker, P. T.; Pang, J. S., Finite dimensional variational inequalities and nonlinear complementarity problems: a survey of theory, algorithms and applications, Math. Program., 48, 161-220 (1990) · Zbl 0734.90098
[52] Haubruge, S.; Nguyen, V. H.; Strodiot, J. J., Convergence analysis and applications of the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximal monotone operators, J. Optim. Theory Appl., 97, 645-673 (1998) · Zbl 0908.90209
[53] He, B. S., A class of projection and contraction methods for variational inequalities, Appl. Math. Optim., 35, 69-76 (1997) · Zbl 0865.90119
[54] He, B. S., Inexact implicit methods for monotone general variational inequalities, Math. Program., 86, 199-217 (1999) · Zbl 0979.49006
[55] He, B. S.; Liao, L. Z., Improvement of some projection methods for monotone nonlinear variational inequalities, J. Optim. Theory Appl., 112, 111-128 (2002) · Zbl 1025.65036
[56] Jabeen, S.; Noor, M. A.; Noor, K. I., Inertial iterative methods for general quasi variational inequalities and dynamical systems, J. Math. Anal., 11, 3, 14-29 (2020)
[57] Karamardian, S., Generalized complementarity problems, J. Optim. Theory Appl., 8, 161-168 (1971) · Zbl 0218.90052
[58] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity (1988), Philadelphia: SIAM, Philadelphia · Zbl 0685.73002
[59] Kinderlehrer, D.; Stampacchia, G., An Introduction to Variational Inequalities and Their Applications (2000), Philadelphia: SIAM, Philadelphia · Zbl 0988.49003
[60] Korpelevich, G. M., The extragradient method for finding saddle points and other problems, Matecon, 12, 747-756 (1976) · Zbl 0342.90044
[61] Larsson, T.; Patriksson, M., A class of gap functions for variational inequalities, Math. Program., 64, 53-79 (1994) · Zbl 0819.65101
[62] Lemke, C. E., Bimatrix equilibrium points and mathematical programming, Manag. Sci., 11, 681-689 (1965) · Zbl 0139.13103
[63] Lemke, C. E.; Howson, J. T. Jr., Equilibrium points of bimatrix games, J. Soc. Ind. Appl. Math., 12, 413-423 (1964) · Zbl 0128.14804
[64] Lewy, H.; Stampacchia, G., On the regularity of the solutions of the variational inequalities, Commun. Pure Appl. Math., 22, 153-188 (1969) · Zbl 0167.11501
[65] Lin, G. H.; Fukushima, M., Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optim. Theory Appl., 118, 1, 67-80 (2003) · Zbl 1033.90087
[66] Lions, J. L.; Stampacchia, G., Variational inequalities, Commun. Pure Appl. Math., 20, 493-512 (1967) · Zbl 0152.34601
[67] Lions, P. L.; Mercier, B., Splitting algorithms for the sum of two monotone operators, SIAM J. Numer. Anal., 16, 964-979 (1979) · Zbl 0426.65050
[68] Liu, J., Sensitivity analysis in nonlinear programs and variational inequalities via continuous selection, SIAM J. Control Optim., 33, 1040-1068 (1995) · Zbl 0839.49017
[69] Luc, D. T.; Noor, M. A., Local uniqueness of solutions of general variational inequalities, J. Optim. Theory Appl., 117, 103-119 (2003) · Zbl 1030.49005
[70] Lucchetti, R.; Patrone, F., A characterization of Tykhonov well-posedness for minimum problems with applications to variational inequalities, Numer. Funct. Anal. Optim., 3, 461-476 (1981) · Zbl 0479.49025
[71] Luo, Z. Q.; Tseng, P., Error bounds and convergence analysis of feasible decent methods: a general approach, Ann. Oper. Res., 46, 157-178 (1993) · Zbl 0793.90076
[72] Martinet, B., Regularization d’inequations variationnelles par approximations successive, Revue Fran. Inform. Rech. Opers., 4, 154-159 (1970) · Zbl 0215.21103
[73] Mignot, F.; Puel, J. P., Optimal control in some variational inequalities, SIAM J. Control Optim., 22, 466-476 (1984) · Zbl 0561.49007
[74] Mohan, M. S.; Neogy, S. K., On invex sets and preinvex functions, J. Math. Anal. Appl., 189, 901-908 (1995) · Zbl 0831.90097
[75] Mohsen, B. B.; Noor, M. A.; Noor, K. I.; Postolache, M., Strongly convex functions of higher order involving bifunction, Mathematics, 7, 11, 1028 (2019) · doi:10.3390/math7111028
[76] Mosco, U., Implicit variational problems and quasi variational inequalities, Lecture Notes Math., 83-126 (1976), Berlin: Springer, Berlin · Zbl 0346.49003
[77] Moudafi, A.; Noor, M. A., Sensitivity analysis for variational inclusions by Wiener-Hopf equations technique, J. Appl. Math. Stoch. Anal., 12, 223-232 (1999) · Zbl 0946.49008
[78] Nagurney, A., Network Economics, A Variational Inequality Approach (1999), Boston: Kluwer Academic, Boston
[79] Nagurney, A.; Zhang, D., Projected Dynamical Systems and Variational Inequalities with Applications (1996), Dordrecht: Kluwer Academic, Dordrecht
[80] Noor, M.A.: The Riesz-Frechet Theorem and Monotonicity. M.Sc. Thesis, Queen’s University, Kingston, Canada (1971)
[81] Noor, M. A., Bilinear forms and convex set in Hilbert space, Boll. UMI, 5, 241-244 (1972) · Zbl 0261.49006
[82] Noor, M.A.: On Variational Inequalities. Ph.D. Thesis, Brunel University, London (1975)
[83] Noor, M. A., Strongly nonlinear variational inequalities, C. R. Math. Rep., 4, 213-218 (1982) · Zbl 0502.49008
[84] Noor, M. A., An iterative scheme for a class of quasi variational inequalities, J. Math. Anal. Appl., 110, 2, 463-468 (1985) · Zbl 0581.65051
[85] Noor, M. A., Generalized quasi complemetarity problems, J. Math. Anal. Appl., 120, 321-327 (1986)
[86] Noor, M. A., Fixed-point approach for complementarity problems, J. Math. Anal. Appl., 133, 437-448 (1988) · Zbl 0649.65037
[87] Noor, M. A., General variational inequalities, Appl. Math. Lett., 1, 119-121 (1988) · Zbl 0655.49005
[88] Noor, M. A., Quasi variational inequalities, Appl. Math. Lett., 1, 367-370 (1988) · Zbl 0708.49015
[89] Noor, M. A., An iterative algorithm for variational inequalities, J. Math. Anal. Appl., 158 (1991) · Zbl 0733.65047
[90] Noor, M. A., Wiener-Hopf equations and variational inequalities, J. Optim. Theory Appl., 79, 197-206 (1993) · Zbl 0799.49010
[91] Noor, M. A.; Rahman, M., Variational inequalities in physical oceanography, Ocean Wave Engineering, 201-226 (1994), Southampton: Comput. Mechanics Publications, Southampton · Zbl 0867.76005
[92] Noor, M. A., Fuzzy preinvex functions, Fuzzy Sets Syst., 64, 95-104 (1994) · Zbl 0844.90111
[93] Noor, M. A., Variational-like inequalities, Optimization, 30, 323-330 (1994) · Zbl 0816.49005
[94] Noor, M. A., Invex equilibrium problems, J. Math. Anal. Appl., 302, 463-475 (2005) · Zbl 1058.49007
[95] Noor, M. A., Fundamentals of equilibrium problems, Math. Inequal. Appl., 9, 3, 529-566 (2006) · Zbl 1099.91072
[96] Noor, M. A., Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2, 126-131 (2007) · Zbl 1204.26039
[97] Noor, M. A., Hadamard integral inequalities for productive of two preinvex functions, Nonlinear Anal. Forum, 14, 167-173 (2009) · Zbl 1296.26086
[98] Noor, M. A., Sensitivity analysis for quasi variational inequalities, J. Optim. Theory Appl., 95, 399-407 (1997) · Zbl 0896.49003
[99] Noor, M. A., Wiener-Hopf equations techniques for variational inequalities, Korean J. Comput. Appl. Math., 7, 581-599 (2000) · Zbl 0978.49011
[100] Noor, M. A., Some recent advances in variational inequalities, Part I, basic concepts, N.Z. J. Math., 26, 53-80 (1997) · Zbl 0886.49004
[101] Noor, M. A., Some recent advances in variational inequalities, Part II, other concepts, N.Z. J. Math., 26, 229-255 (1997) · Zbl 0889.49006
[102] Noor, M. A., Generalized quasi variational inequalities and implicit Wiener-Hopf equations, Optimization, 45, 197-222 (1999) · Zbl 0939.49009
[103] Noor, M. A., A modified extragradient method for general monotone variational inequalities, Comput. Math. Appl., 38, 19-24 (1999) · Zbl 0939.47055
[104] Noor, M. A., Some algorithms for general monotone mixed variational inequalities, Math. Comput. Model., 29, 1-9 (1999) · Zbl 0991.49004
[105] Noor, M. A., Set-valued mixed quasi variational inequalities and implicit resolvent equations, Math. Comput. Model., 29, 1-11 (1999) · Zbl 0994.47063
[106] Noor, M. A., Merit functions for variational-like inequalities, Math. Inequal. Appl., 3, 117-128 (2000) · Zbl 0966.49009
[107] Noor, M. A., A class of new iterative methods for general mixed variational inequalities, Math. Comput. Model., 31, 13, 11-19 (2001) · Zbl 0953.49016
[108] Noor, M. A., A predictor-corrector method for general variational inequalities, Appl. Math. Lett., 14, 53-87 (2001) · Zbl 0972.49006
[109] Noor, M. A., A Wiener-Hopf dynamical system for variational inequalities, N.Z. J. Math., 31, 173-182 (2002) · Zbl 1047.49011
[110] Noor, M. A., New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251, 217-229 (2000) · Zbl 0964.49007
[111] Noor, M. A., Three-step iterative algorithms for multivalued quasi variational inclusions, J. Math. Anal. Appl., 255, 589-604 (2001) · Zbl 0986.49006
[112] Noor, M. A., Modified resolvent algorithms for general mixed variational inequalities, J. Comput. Appl. Math., 135, 111-124 (2001) · Zbl 0997.65091
[113] Noor, M. A., Projection-splitting algorithms for general monotone variational inequalities, J. Comput. Anal. Appl., 4, 47-61 (2002) · Zbl 1039.49010
[114] Noor, M. A., Proximal methods for mixed variational inequalities, J. Optim. Theory Appl., 115, 447-451 (2002) · Zbl 1033.49014
[115] Noor, M. A., Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput., 134, 69-81 (2002) · Zbl 1032.47041
[116] Noor, M. A., Implicit resolvent dynamical systems for quasi variational inclusions, J. Math. Anal. Appl., 269, 216-226 (2002) · Zbl 1002.49010
[117] Noor, M. A., Sensitivity analysis framework for general quasi variational inequalities, Comput. Math. Appl., 44, 1175-1181 (2002) · Zbl 1034.49007
[118] Noor, M. A., Extragradient method for pseudomonotone variational inequalities, J. Optim. Theory Appl., 117, 3, 475-488 (2003) · Zbl 1049.49009
[119] Noor, M. A., New extragradient-type methods for general variational inequalities, J. Math. Anal. Appl., 277, 379-395 (2003) · Zbl 1033.49015
[120] Noor, M. A., Well-posed variational inequalities, J. Appl. Math. Comput., 11, 165-172 (2003) · Zbl 1033.49016
[121] Noor, M. A., Auxiliary principle technique for equilibrium problems, J. Optim. Theory Appl., 122, 2, 371-386 (2004) · Zbl 1092.49010
[122] Noor, M. A., Some developments in general variational inequalities, Appl. Math. Comput., 152, 199-277 (2004) · Zbl 1134.49304
[123] Noor, M. A., Merit functions for general variational inequalities, J. Math. Anal. Appl., 316, 2, 736-752 (2006) · Zbl 1085.49011
[124] Noor, M. A., Differentiable non-convex functions and general variational inequalities, Appl. Math. Comput., 99, 623-630 (2008) · Zbl 1147.65047
[125] Noor, M. A., Extended general variational inequalities, Appl. Math. Lett., 22, 2, 182-185 (2009) · Zbl 1163.49303
[126] Noor, M. A., On an implicit method for nonconvex variational inequalities, J. Optim. Theory Appl., 147, 411-417 (2010) · Zbl 1202.90253
[127] Noor, M. A.; Noor, K. I., Multivalued variational inequalities and resolvent equations, Math. Comput. Model., 26, 4, 109-121 (1997) · Zbl 0893.49005
[128] Noor, M. A.; Noor, K. I., Sensitivity analysis for quasi variational inclusions, J. Math. Anal. Appl., 236, 290-299 (1999) · Zbl 0949.49007
[129] Noor, M. A.; Noor, K. I., On strongly generalized preinvex functions, J. Inequal. Pure Appl. Math., 6, 4 (2005) · Zbl 1096.26006
[130] Noor, M. A.; Noor, K. I., Some characterization of strongly preinvex functions, J. Math. Anal. Appl., 316, 2, 697-706 (2006) · Zbl 1093.26006
[131] Noor, M. A.; Noor, K. I., Generalized preinvex functions and their properties, J. Appl. Math. Stoch. Anal., 2006, 1-13 (2006) · Zbl 1132.49005 · doi:10.1155/JAMSA/2006/12736
[132] Noor, M. A.; Noor, K. I., Exponentially convex functions, J. Orissa Math. Soc., 39, 1-2, 33-51 (2019)
[133] Noor, M. A.; Noor, K. I., On strongly exponentially preinvex functions, U.P.B. Sci. Bull. Ser. A, 81, 4, 75-84 (2019) · Zbl 07598080
[134] Noor, M. A.; Noor, K. I., Strongly exponentially convex functions and their properties, J. Adv. Math. Stud., 12, 2, 177-185 (2019) · Zbl 1431.26009
[135] Noor, M. A.; Noor, K. I., Some properties of exponential preinvex functions, Facta Univ. (NIS), 34, 5, 941-955 (2019) · Zbl 1474.26129
[136] Noor, M. A.; Noor, K. I., New classes of exponentially preinvex functions, AIMS Math., 4, 6, 1554-1568 (2019) · Zbl 1486.26020
[137] Noor, M. A.; Noor, K. I., Exponentially general convex functions, Trans. J. Math. Mech., 11, 1-2, 141-153 (2019)
[138] Noor, M. A.; Noor, K. I., Some new classes of extronentially general convex functions, U.P.B. Sci. Bull. Ser. A., 81, 3, 117-128 (2020) · Zbl 07598158
[139] Noor, M. A.; Noor, K. I., Higher order strongly general convex functions and variational inequalities, AIMS Math., 5, 4, 3646-3663 (2020) · Zbl 1484.49017
[140] Noor, M. A.; Noor, K. I., Higher order general convex functions and general variational inequalities, Canad. J. Appl. Math., 3, 1, 1-17 (2021)
[141] Noor, M. A.; Noor, K. I.; Daras, N. J.; Rassias, T. M., From representation theorems to variational inequalities, Computational Mathematics and Variational Analysis (2020), Berlin: Springer, Berlin · Zbl 1480.49009
[142] Noor, M. A.; Oettli, W., On general nonlinear complementarity problems and quasi equilibria, Matematiche, 49, 313-331 (1994) · Zbl 0839.90124
[143] Noor, M. A.; Noor, K. I.; Bnouhachem, A., On a unified implicit method for variational inequalities, J. Comput. Appl. Math., 249, 69-73 (2013) · Zbl 1509.47088
[144] Noor, M. A.; Al-Said, E., Change of variable method for generalized complementarity problems, J. Optim. Theory Appl., 100, 389-395 (1999) · Zbl 0915.90244
[145] Noor, M. A.; Al-Said, E. A., Finite difference method for a system of third-order boundary value problems, J. Optim. Theory Appl., 112, 627-637 (2002) · Zbl 1002.49012
[146] Noor, M. A.; Rassias, T. M., A class of projection methods for general variational inequalities, J. Math. Anal. Appl., 268, 334-343 (2002) · Zbl 1038.49017
[147] Noor, M. A.; Noor, K. I.; Rassias, T. M., Some aspects of variational inequalities, J. Comput. Appl. Math., 47, 285-312 (1993) · Zbl 0788.65074
[148] Noor, M. A.; Noor, K. I.; Rassias, T. M., Set-valued resolvent equations and mixed variational inequalities, J. Math. Anal. Appl., 220, 741-759 (1998) · Zbl 1021.49002
[149] Noor, M. A.; Noor, K. I.; Rassias, T. M.; Andrica, D.; Rassias, Th. M., Iterative methods for variational inequalities, Differential and Integral Inequalities, 603-618 (2019) · Zbl 1441.49014
[150] Noor, M. A.; Tirmizi, S. I.A., Finite difference techniques for solving obstacle problems, Appl. Math. Lett., 1, 267-271 (1988) · Zbl 0659.49006
[151] Noor, M. A.; Noor, K. I.; Yaqoob, H., On general mixed variational inequalities, Acta Appl. Math., 110, 227-246 (2010) · Zbl 1190.49015
[152] Noor, M. A.; Wang, Y. J.; Xiu, N. H., Some projection iterative schemes for general variational inequalities, J. Inequal. Pure Appl. Math., 3, 3, 1-8 (2002) · Zbl 1142.49304
[153] Noor, M. A.; Wang, Y. J.; Xiu, N. H., Some new projection methods for variational inequalities, Appl. Math. Comput., 137, 423-435 (2003) · Zbl 1031.65078
[154] Pal, S.; Wong, T. K., On exponentially concave functions and a new information geometry, Ann. Probab., 46, 2, 1070-1113 (2018) · Zbl 1390.60064
[155] Pang, J. S., On the convergence of a basic iterative method for the implicit complementarity problems, J. Optim. Theory Appl., 37, 149-162 (1982) · Zbl 0482.90084
[156] Patriksson, M., Nonlinear Programming and Variational Inequality Problems: A Unified Approach (1998), Dordrecht: Kluwer Academic, Dordrecht
[157] Pervez, A.; Khan, A. G.; Noor, M. A.; Noor, K. I., Mixed quasi variational inequalities involving four nonlinear operators, Honam Math. J., 42, 1, 17-35 (2020) · Zbl 1448.49016
[158] Poliquin, R. A.; Rockafellar, R. T.; Thibault, L., Local differentiability of distance functions, Trans. Am. Math. Soc., 352, 5231-5249 (2000) · Zbl 0960.49018
[159] Polyak, B. T., Introduction to Optimization (1987), New York: Optimization Software, New York · Zbl 0625.62093
[160] Qiu, Y.; Magnanti, T. L., Sensitivity analysis for variational inequalities defined on polyhedral sets, Math. Oper. Res., 14, 410-432 (1989) · Zbl 0698.90069
[161] Rashid, S.; Noor, M. A.; Noor, K. I., Fractional exponentially \(m\)-convex functions and inequalities, Int. J. Anal. Appl., 17, 3, 464-478 (2019) · Zbl 1438.26089
[162] Rashid, S.; Noor, M. A.; Noor, K. I., Some generalized Reimann-Liouville fractional estimates involving functions having exponentially convexity property, Pujnab Univ. J. Math., 51, 11 (2019)
[163] Rashid, S.; Noor, M. A.; Noor, K. I., New estimates for exponentially convex functions via conformable fractional operator, Fractal Fract., 3, 19 (2019)
[164] Rashid, S.; Noor, M. A.; Noor, K. I., Some new generalizations for exponentially sconvex functions and inequalities via fractional operators, Fractal Fract., 3, 34 (2019)
[165] Rashid, S.; Noor, M. A.; Noor, K. I., Some new estimates for exponentially \((h, m)\)-convex functions via extended generalized fractional integral operators, Korean J. Math., 27, 4, 843-860 (2019) · Zbl 1436.26023
[166] Robinson, S. M., Normal maps induced by linear transformations, Math. Oper. Res., 17, 691-714 (1992) · Zbl 0777.90063
[167] Rockafellar, R. T., Monotone operators and the proximal point algorithms, SIAM J. Control Optim., 14, 877-898 (1976) · Zbl 0358.90053
[168] Shi, P., Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Am. Math. Soc., 111, 339-346 (1991) · Zbl 0881.35049
[169] Shi, S., Optimal control of strongly monotone variational inequalities, SIAM J. Control Optim., 25, 274-290 (1988) · Zbl 0644.49007
[170] Sibony, M., Methodes iteratives pour les equations et inequations aux derivees partielles nonlineaires de type monotone, Calcolo, 7, 65-183 (1970) · Zbl 0225.35010
[171] Solodov, M. V.; Svaiter, B. F., A new projection method for variational inequality problems, SIAM J. Control Optim., 42, 309-321 (1997) · Zbl 0891.90135
[172] Solodov, M. V.; Tseng, P., Modified projection type methods for monotone variational inequalities, SIAM J. Control Optim., 34, 1814-1830 (1996) · Zbl 0866.49018
[173] Stampacchia, G., Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Paris, 258, 4413-4416 (1964) · Zbl 0124.06401
[174] Sun, D., A class of iterative methods for solving nonlinear projection equations, J. Optim. Theory Appl., 91, 123-140 (1996) · Zbl 0871.90091
[175] Sun, D., A projection and contraction method for the nonlinear complementarity problem and its extensions, Math. Numer. Sin., 16, 183-194 (1994) · Zbl 0900.65188
[176] Taji, K.; Fukushima, M.; Ibaraki, T., A globally convergent Newton method for solving strongly monotone variational inequalities, Math. Program., 58, 369-383 (1993) · Zbl 0792.49007
[177] Tonti, E., Variational formulation for every nonlinear problem, Int. J. Eng. Sci., 22, 1343-1371 (1984) · Zbl 0558.49022
[178] Tobin, R. L., Sensitivity analysis for variational inequalities, J. Optim. Theory Appl., 48, 191-204 (1986) · Zbl 0557.49004
[179] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J. Control Optim., 38, 431-446 (2000) · Zbl 0997.90062
[180] Tseng, P., On linear convergence of iterative methods for variational inequality problem, J. Comput. Appl. Math., 60, 237-252 (1995) · Zbl 0835.65087
[181] Wang, Y. J.; Xiu, N. H.; Wang, C. Y., Unified framework of projection methods for pseudomonotone variational inequalities, J. Optim. Theory Appl., 111, 643-658 (2001) · Zbl 1039.49014
[182] Wang, Y. J.; Xiu, N. H.; Wang, C. Y., A new version of extragradient projection method for variational inequalities, Comput. Math. Appl., 42, 969-979 (2001) · Zbl 0993.49005
[183] Weir, T.; Mond, B., Preinvex functions in multiobjective optimization, J. Math. Anal. Appl., 136, 29-38 (1986) · Zbl 0663.90087
[184] Wembim, L.; Rubio, J. E., Optimality conditions for strongly monotone variational inequalities, Appl. Math. Optim., 27, 291-312 (1993) · Zbl 0779.49012
[185] Xia, Y. S.; Wang, J., On the stability of globally projected dynamical systems, J. Optim. Theory Appl., 106, 129-150 (2000) · Zbl 0971.37013
[186] Xiu, N.; Zhang, J.; Noor, M. A., Tangent projection equations and general variational equalities, J. Math. Anal. Appl., 258, 755-762 (2001) · Zbl 1008.49010
[187] Xiu, N. H.; Zhang, J., Some recent advances in projection-type methods for variational inequalities, J. Comput. Appl. Math., 152, 559-585 (2003) · Zbl 1018.65083
[188] Xiu, N. H.; Zhang, J. Z., Global projection-type error bounds for general variational inequalities, J. Optim. Theory Appl., 112, 213-228 (2002) · Zbl 1005.49004
[189] Xiu, N. M.; Zhang, J., Local convergence of projection-type algorithms: a unified approach, J. Optim. Theory Appl., 115, 211-230 (2002) · Zbl 1091.49011
[190] Xu, H-K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16, 12, 1127-1138 (1991) · Zbl 0757.46033
[191] Yang, H.; Bell, M. G.H., Traffic restraint, road pricing and network equilibrium, Transp. Res. B, 31, 303-314 (1997)
[192] Yang, X. Q., On the gap functions of prevariational inequalities, J. Optim. Theory Appl., 116, 437-457 (2003) · Zbl 1027.49004
[193] Yang, X. Q.; Chen, G. Y., A class of nonconvex functions and variational inequalities, J. Math. Anal. Appl., 169, 359-373 (1992) · Zbl 0779.90067
[194] Yang, X. M.; Yang, Q.; Teo, K. L., Criteria for generalized invex monotonicities, Eur. J. Oper. Res., 164, 1, 115-119 (2005) · Zbl 1132.90360
[195] Yang, X. M.; Yang, Q.; Teo, K. L., Generalized invexity and generalized invariant monotonicity, J. Optim. Theory Appl., 117, 607-625 (2003) · Zbl 1141.90504
[196] Yen, N. D.; Lee, G. M., Solution sensitivity of a class of variational inequalities, J. Math. Anal. Appl., 215, 46-55 (1997) · Zbl 0906.49002
[197] Youness, E. A., \(E\)-convex sets, \(E\)-convex functions and \(E\)-convex programming, J. Optim. Theory Appl., 102, 439-450 (1999) · Zbl 0937.90082
[198] Zhang, D.; Nagurney, A., On the stability of the projected dynamical systems, J. Optim. Theory Appl., 85, 97-124 (1995) · Zbl 0837.93063
[199] Zhao, Y. B., Extended projection methods for monotone variational inequalities, J. Optim. Theory Appl., 100, 219-231 (1999) · Zbl 0922.90137
[200] Zhao, Y. X.; Wang, S. Y.; Coladas Uria, L., Characterizations of \(r\)-convex functions, J. Optim. Theory Appl., 145, 186-195 (2010) · Zbl 1231.90314
[201] Zhu, D. L.; Marcotte, P., Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities, SIAM J. Optim., 6, 714-726 (1996) · Zbl 0855.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.