×

Cohomology theory for financial time series. (English) Zbl 07530124

Summary: Khovanov cohomology in time series data is used to model financial time in figure-eight hyperbolic knotted time series. We defined Chern-Simons current from the interaction of behavior of traders over Wilson loop with link eight states. We build a new path integral for the market phase transitions as Wilson loop between predictor and predictant paths in physiology of time series data. The obtained results are presented in the form of proved theorems. In the first theorem, we prove the existences of Chern-Simons current in the bid-ask spread as arbitrage opportunity for market phase transition of the interaction of Yang-Mills behavior field of the trader. In the second theorem, we prove the existence of market 8 states. As a consequence of the theorems, we classify the smallest subunit of market microstructure as 16 physiology cones according to all possibilities of the future outcome of endpoint state in time series data. The financial market movements for up and down directions with the curvature as link number are obtain from a market phase transition with eigenvalue of new defined Dirac operator for the financial market. The market curvature value appears as knot and link properties in time series data.

MSC:

82-XX Statistical mechanics, structure of matter

Software:

khoca
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Mantegna, Rosario N.; Stanley, H. Eugene, An Introduction to Econophysics: Correlations and Complexity in Finance (2000), Cambridge University Press: Cambridge University Press New York, NY, USA · Zbl 1138.91300
[2] Schoder, Christian, Are dynamic stochastic disequilibrium models keynesian or neoclassical?, Struct. Change Econ. Dyn., 40, 46-63 (2017)
[3] Buchanan, Mark, Economics: Meltdown modelling, Nature, 460, 7256, 680-682 (2009)
[4] Balzin, E., Derived sections of grothendieck fibrations and the problems of homotopical algebra, Appl. Categ. Structures, 25, 5, 917-963 (2017) · Zbl 1397.18036
[5] Verlinde, E., Fusion rules and modular transformations in 2d conformal field theory, Nuclear Phys. B, 300, C, 360-376 (1988) · Zbl 1180.81120
[6] Aguilera-Damia, J.; Correa, D. H.; Fucito, F.; Giraldo-Rivera, V. I.; Morales, J. F.; Pando Zayas, L. A., Strings in bubbling geometries and dual wilson loop correlators, J. High Energy Phys., 2017, 12 (2017) · Zbl 1383.83144
[7] Kondo, K.-I.; Sasago, T.; Shinohara, T.; Shibata, A.; Kato, S., Magnetic monopole versus vortex as gauge-invariant topological objects for quark confinement, Internat. J. Modern Phys. A, 32, 36 (2017)
[8] Goldstein, M. A.; Kavajecz, K. A., Eighths, sixteenths, and market depth: Changes in tick size and liquidity provision on the nyse, J. Financ. Econ., 56, 1, 125-149 (2000)
[9] Capozziello, S.; Pincak, R.; Kanjamapornkul, K., Anomaly on superspace of time series data, Z. Nat.forsch. A, 72, 12, 1077-1091 (2017)
[10] Lewark, L.; Lobb, A., New quantum obstructions to sliceness, Proc. Lond. Math. Soc., 112, 1, 81-114 (2015) · Zbl 1419.57017
[11] Kriz, D.; Kriz, I., A spanning tree cohomology theory for links, Adv. Math., 255, 414-454 (2014) · Zbl 1309.57009
[12] Novikov, S., Henri poincaré and xxth century topology, (Proceedings of the Symposium Henri Poincaré (Brussels, 8-9 October 2004) (2004), International Solvay Institutes for Physics and Chemistry), 1-9
[13] Ohtsuki, T., On the asymptotic expansions of the kashaev invariant of hyperbolic knots with seven crossings, Internat. J. Math., 28, 13 (2017) · Zbl 1388.57014
[14] Bott, Raoul, Georges de Rham 1901-1990, Notices Amer. Math. Soc., 38, 2, 114 (1991) · Zbl 1194.01069
[15] Rovelli, Carlo, Basis of the ponzano-regge-turaev-viro-ooguri quantum-gravity model is the loop representation basis, Phys. Rev. D, 48, 2702-2707 (1993)
[16] Horváth, Denis; Pinčák, Richard, From the currency rate quotations onto strings and brane world scenarios, Physica A, 391, 5172-5188 (2012)
[17] Berne, E., Ego states in psychotherapy, Am. J. Psychother., 11, 2, 293-309 (1957)
[18] Beasley, C., Localization for wilson loops in Chern-Simons theory, Adv. Theor. Math. Phys., 17, 1, 1-240 (2013) · Zbl 1290.81057
[19] Kanjamapornkul, Kabin; Pinčák, Richard; Chunithpaisan, Sanphet; Bartoš, Erik, Support spinor machine, Digit. Signal Process., 70, 59-72 (2017)
[20] Pincak, R., D-brane solutions under market panic, Int. J. Geom. Methods Mod. Phys., 15, 6 (2018) · Zbl 1422.91719
[21] Bartoš, Erik; Pinčák, Richard, Identification of market trends with string and D2-brane maps, Physica A, 479, 57-70 (2017)
[22] Frei, Mark G.; Osorio, Ivan, Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals, Proc. R. Soc. A, 463, 2078, 321-342 (2007) · Zbl 1134.94313
[23] Ochiai, T.; Nacher, J. C., Volatility-constrained correlation identifies the directionality of the influence between japan’s nikkei 225 and other financial markets, Physica A, 393, 364-375 (2014)
[24] Podobnik, B.; Jusup, M.; Wang, Z.; Stanley, H. E., How fear of future outcomes affects social dynamics, J. Stat. Phys., 167, 3-4, 1007-1019 (2017) · Zbl 1406.91308
[25] Münnix, Michael C.; Shimada, Takashi; Schäfer, Rudi; Leyvraz, Francois; Seligman, Thomas H.; Guhr, Thomas; Stanley, H. Eugene, Identifying states of a financial market, Nat. Sci. Rep., 2, 644 (2012)
[26] Kostanjčar, Z.; Begušić, S.; Stanley, H. E.; Podobnik, B., Estimating tipping points in feedback-driven financial networks, IEEE J. Sel. Top. Signal Process., 10, 6, 1040-1052 (2016)
[27] Witten, Edward, Khovanov Homology and Gauge Theory (2012) · Zbl 1276.57013
[28] Kanjamapornkul, K.; Pinčák, R.; Bartoš, E., The study of Thai stock market across the 2008 financial crisis, Physica A, 462, 2016, 117-133 (2008) · Zbl 1400.91665
[29] Del Vicario, M.; Scala, A.; Caldarelli, G.; Stanley, H. E.; Quattrociocchi, W., Modeling confirmation bias and polarization, Sci. Rep., 7 (2017)
[30] Polyakov, A.; Rychkov, V., Gauge fields-strings duality and the loop equation, Nuclear Phys. B, 581, 1-2, 116-134 (2000) · Zbl 0984.81102
[31] Garman, M. B., Market microstructure, J. Financ. Econ., 3, 3, 257-275 (1976)
[32] Witten, Edward, Fivebranes and knots (2011) · Zbl 1241.57041
[33] Okuyama, K., Phase transition of anti-symmetric wilson loops in n= 4 sym, J. High Energy Phys., 2017, 12 (2017) · Zbl 1383.81139
[34] Alonso, M. N., Statistical Arbitrage and Algorithmic Trading: Overview and Applications (2010)
[35] Capozziello, S.; Pincak, R.; Kanjamapornkul, K.; Saridakis, E. N., The chern-simons current in systems of dna-rna transcriptions, Ann. Phys., 530, 4 (2018)
[36] Farinelli, S., Geometric arbitrage theory and market dynamics, J. Geom. Mech., 7, 4, 431-471 (2015) · Zbl 1335.91119
[37] Kanjamapornkul, Kabin; Pinčák, Richard, Kolmogorov space in time series data, Math. Methods Appl. Sci., 4463-4483 (2016) · Zbl 1425.91357
[38] Engle, R., Risk and volatility: Econometric models and financial practice, Amer. Econ. Rev., 94, 3, 405-420 (2004)
[39] Bollerslev, T.; Chou, R. Y.; Kroner, K. F., Arch modeling in finance. A review of the theory and empirical evidence, J. Econometrics, 52, 1-2, 5-59 (1992) · Zbl 0825.90057
[40] Pauli, W., The connection between spin and statistics, Phys. Rev., 58, 8, 716-722 (1940) · JFM 66.1177.01
[41] Crichton, E., Transactional analysis: Ego states - what they are and how to diagnose them, Aust. J. Clin. Hypnother. Hypn., 28, 1, 28-38 (2007)
[42] Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. A, 454, 903-995 (1998) · Zbl 0945.62093
[43] Pincak, R.; Kanjamapornkul, K., Garch(1, 1) model of the financial market with the minkowski metric, Z. Nat.forsch. A, 73, 8, 669-684 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.