×

Modelling of detonation cellular structure in aluminium suspensions. (English) Zbl 1272.76164

Summary: Heterogeneous detonations involving aluminium suspensions have been studied for many years for industrial safety policies, and for military and propulsion applications. Owing to their weak detonability and to the lack of available experimental results on the detonation cellular structure, numerical simulations provide a convenient way to improve the knowledge of such detonations. One major difficulty arising in numerical study of heterogeneous detonations involving suspensions of aluminium particles in oxidizing atmospheres is the modelling of aluminium combustion. Our previous two-step model provided results on the effect on the detonation cellular structure of particle diameter and characteristic chemical lengths. In this study, a hybrid model is incorporated in the numerical code EFAE, combining both kinetic and diffusion regimes in parallel. This more realistic model provides good agreement with the previous two-step model and confirms the correlations found between the detonation cell width, and particle diameter and characteristic lengths. Moreover, the linear dependence found between the detonation cell width and the induction length remains valid with the hybrid model.

MSC:

76L05 Shock waves and blast waves in fluid mechanics
76V05 Reaction effects in flows
76T20 Suspensions
80A25 Combustion
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhang F., Grönig H., Van de Ven A.: DDT and detonation waves in dust–air mixtures. Shock Waves 11, 53–71 (2001) · doi:10.1007/PL00004060
[2] Ingignoli, W., Veyssiere, B., Khasainov, B.A.: Shock initiation of detonations in aluminium–oxygen mixtures. In: Pulsed and Continuous Detonations, pp. 218–224. Torus Press, Moscow, ISBN 5-94588-040-X (2006)
[3] Briand, A., Veyssiere, B., Khasainov, B.A.: Detonability of aluminium suspensions. In: Proceedings of the 7th ISHPMIE, vol. 2, pp. 213–222. St. Petersburg, Russia (2008) · Zbl 1267.76112
[4] Veyssiere B., Khasainov B.A., Briand A.: Investigation of detonation initiation in aluminium suspensions. Shock Waves 18(4), 307–315 (2008) · Zbl 1267.76112 · doi:10.1007/s00193-008-0136-z
[5] Benkiewicz K., Hayashi A.K.: Two-dimensional numerical simulations of multi-headed detonations in oxygen–aluminium mixtures using adaptative mesh refinement. Shock Waves 12(5), 385–402 (2003) · Zbl 1024.76517 · doi:10.1007/s00193-002-0169-7
[6] Fedorov A.V., Khmel T.A.: Numerical simulation of formation of cellular heterogeneous detonation of aluminium particles in oxygen. Comb. Expl. Shock Waves 41(4), 435–448 (2005) · doi:10.1007/s10573-005-0054-7
[7] Khmel T.A., Fedorov A.V.: Dependence of the heterogeneous detonation cell size on the flow scales. In: Roy, G., Frolov, S.M. (eds) Pulse and Continuous Detonation Propulsion, pp. 107–122. Torus Press, Moscow (2006)
[8] Zhang, F., Gerrard, K.B., Ripley, R.C., Tanguay, V.: Unconfined aluminium particles–air detonation. In: Proceedings of the 26th ISSW, pp. 15–20. Goettingen, Germany (2007)
[9] Khasainov B.A., Veyssiere B.: Analysis of the steady double-front detonation structure for a detonable gas laden with aluminium particles. Arch. Combust. 7(3–4), 333–352 (1987)
[10] Zhang F., Murray S.B., Gerrard K.B.: Aluminium particles–air detonation at elevated pressure. Shock Waves 15, 313–324 (2006) · doi:10.1007/s00193-006-0027-0
[11] Shchelkin, K.I., Troshin, Ya.K.: Gas-Dynamics of Combustion [in Russian]. Izd. Akad. Nauk. SSSR, Moscow (1963)
[12] Frank-Kamenetzkii D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press, New York (1969)
[13] Nigmatulin R.I.: Prikl. Matemat. Mekh. 34, 1097–1112 (1970)
[14] Veyssiere B., Khasainov B.A.: A model for steady, plane, double- front detonations (DFD) in gaseous explosive mixtures with aluminium particles in suspension. Combust. Flame 85, 241–253 (1991) · doi:10.1016/0010-2180(91)90191-D
[15] Price E.W.: Combustion of metalized propellants, fundamentals of solid propellant combustion. In: Kuo, K.K., Summerfield, M.M. (eds) Progress in Astronautics and Aeronautics, vol. 90, pp. 479–513. AIAA, New York (1984)
[16] Veyssiere B., Kato Y., Brochet C., Bouriannes R., Manson N.: Pyrometric studies of Al combustion in the wake of two-phase detonations. Arch. Combust. 3(3), 151–160 (1983)
[17] Oran E.S., Boris J.P.: Numerical Simulation of Reactive Flow, 2nd edn. Cambridge University Press, Cambridge (2001) · Zbl 0980.76002
[18] Hirsch C.: Numerical Computation of Internal and External Flows. Vol. 1: Fundamentals of Numerical Discretization. Wiley, New York (1988) · Zbl 0662.76001
[19] Veyssiere B., Bozier O., Khasainov B.A.: Effect of a suspension of magnesium particles on the detonation characteristics of methane-oxygene-nitrogen mixtures at elevated initial pressure. Shock waves 12, 27–233 (2002) · Zbl 1012.76549 · doi:10.1007/s00193-002-0158-x
[20] Victorov S.B., Gubin S.A.: A double-front structure of detonation wave as the result of phase transition. Shock Waves 15(2), 113–128 (2006) · Zbl 1195.76248 · doi:10.1007/s00193-006-0008-3
[21] Ingignoli, W.: Etude de la formation et de la propagation des detonations dans des suspensions de particules d’aluminium en atmosphere oxydante ou reactive. These de Docteur-Ingenieur, ENSMA, University of Poitiers, France (1999)
[22] Merzhanov A.G., Grigor’jev Yu.M., Gal’Chenko Yu.A.: Aluminium ignition. Combust. Flame 29, 1–14 (1977) · doi:10.1016/0010-2180(77)90088-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.