×

zbMATH — the first resource for mathematics

Orthogonal multiwavelet frames in \(L^2(\mathbb{R}^d)\). (English) Zbl 1235.42036
Summary: We characterize the orthogonal frames and orthogonal multiwavelet frames in \(L^2(\mathbb{R}^d)\) with matrix dilations of the form \((Df)(x) = \sqrt{|\det A|} f(Ax)\), where \(A\) is an arbitrary expanding \(d \times d\) matrix with integer coefficients. Firstly, through two arbitrarily multiwavelet frames, we give a simple construction of a pair of orthogonal multiwavelet frames. Then, by using the unitary extension principle, we present an algorithm for the construction of arbitrarily many orthogonal multiwavelet tight frames. Finally, we give a general construction algorithm for orthogonal multiwavelet tight frames from a scaling function.

MSC:
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
42C15 General harmonic expansions, frames
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” Institute of Electrical and Electronics Engineers. Transactions on Information Theory, vol. 36, no. 5, pp. 961-1005, 1990. · Zbl 0738.94004
[2] I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1992. · Zbl 0776.42018
[3] L. Debnath, Wavelet Transforms and Their Applications, Birkhäuser, Boston, Mass, USA, 2002. · Zbl 1019.94003
[4] E. Hernández and G. Weiss, An Introduction to Wavelets, CRC Press, Boca Raton, Fla, USA, 1998.
[5] X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, “Design of pre filters for discrete multiwavelet transforms,” IEEE Transactions on Signal Processing, vol. 44, no. 1, pp. 25-35, 1996.
[6] B. Han and Q. Mo, “Multiwavelet frames from refinable function vectors,” Advances in Computational Mathematics, vol. 18, no. 2-4, pp. 211-245, 2003. · Zbl 1059.42030
[7] V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, “The application of multiwavelet filterbanks to image processing,” IEEE Transactions on Image Processing, vol. 8, no. 4, pp. 548-563, 1999.
[8] R. J. Duffin and A. C. Schaeffer, “A class of nonharmonic Fourier series,” Transactions of the American Mathematical Society, vol. 72, pp. 341-366, 1952. · Zbl 0049.32401
[9] A. Ron and Z. Shen, “Weyl-Heisenberg frames and Riesz bases in L2Rd,” Duke Mathematical Journal, vol. 89, no. 2, pp. 237-282, 1997. · Zbl 0892.42017
[10] J. J. Benedetto and S. Li, “The theory of multiresolution analysis frames and applications to filter banks,” Applied and Computational Harmonic Analysis, vol. 5, no. 4, pp. 389-427, 1998. · Zbl 0915.42029
[11] I. W. Selesnick and A. F. Abdelnour, “Symmetric wavelet tight frames with two generators,” Applied and Computational Harmonic Analysis, vol. 17, no. 2, pp. 211-225, 2004. · Zbl 1066.42027
[12] Z. Liu, G. Hu, and G. Wu, “Frame scaling function sets and frame wavelet sets in Rd,” Chaos, Solitons & Fractals, vol. 40, no. 5, pp. 2483-2490, 2009. · Zbl 1198.42049
[13] Z. Liu, G. Hu, G. Wu, and B. Jiang, “Semi-orthogonal frame wavelets and Parseval frame wavelets associated with GMRA,” Chaos, Solitons & Fractals, vol. 38, no. 5, pp. 1449-1456, 2008. · Zbl 1198.42050
[14] Z. Liu, G. Hu, and Z. Lu, “Parseval frame scaling sets and MSF Parseval frame wavelets,” Chaos, Solitons & Fractals, vol. 41, no. 4, pp. 1966-1974, 2009. · Zbl 1198.42048
[15] G. Wu, Z. Cheng, D. Li, and F. Zhang, “Parseval frame wavelets associated with A-FMRA,” Chaos, Solitons and Fractals, vol. 37, no. 4, pp. 1233-1243, 2008. · Zbl 05312320
[16] E. Weber, “Orthogonal frames of translates,” Applied and Computational Harmonic Analysis, vol. 17, no. 1, pp. 69-90, 2004. · Zbl 1042.42038
[17] H. O. Kim, R. Y. Kim, J. K. Lim, and Z. Shen, “A pair of orthogonal frames,” Journal of Approximation Theory, vol. 147, no. 2, pp. 196-204, 2007. · Zbl 1116.42009
[18] G. Bhatt, B. D. Johnson, and E. Weber, “Orthogonal wavelet frames and vector-valued wavelet transforms,” Applied and Computational Harmonic Analysis, vol. 23, no. 2, pp. 215-234, 2007. · Zbl 1136.42026
[19] D. Bakić, I. Krishtal, and E. N. Wilson, “Parseval frame wavelets with En2-dilations,” Applied and Computational Harmonic Analysis, vol. 19, no. 3, pp. 386-431, 2005. · Zbl 1090.42020
[20] O. Christensen, “Frames and pseudo-inverses,” Journal of Mathematical Analysis and Applications, vol. 195, no. 2, pp. 401-414, 1995. · Zbl 0845.47002
[21] J. R. Holub, “Pre-frame operators, Besselian frames, and near-Riesz bases in Hilbert spaces,” Proceedings of the American Mathematical Society, vol. 122, no. 3, pp. 779-785, 1994. · Zbl 0821.46008
[22] A. Ron and Z. Shen, “Frames and stable bases for shift-invariant subspaces of L2Rd,” Canadian Journal of Mathematics. Journal Canadien de Mathématiques, vol. 47, no. 5, pp. 1051-1094, 1995. · Zbl 0838.42016
[23] M. Bownik, “The structure of shift-invariant subspaces of L2Rn,” Journal of Functional Analysis, vol. 177, no. 2, pp. 282-309, 2000. · Zbl 0986.46018
[24] A. Ron and Z. Shen, “Affine systems in L2Rd. II. Dual systems,” The Journal of Fourier Analysis and Applications, vol. 3, no. 5, pp. 617-637, 1997. · Zbl 0904.42025
[25] A. Ron and Z. Shen, “Affine systems in L2Rd: the analysis of the analysis operator,” Journal of Functional Analysis, vol. 148, no. 2, pp. 408-447, 1997. · Zbl 0891.42018
[26] M. Bownik and Z. Rzeszotnik, “Construction and reconstruction of tight framelets and wavelets via matrix mask functions,” Journal of Functional Analysis, vol. 256, no. 4, pp. 1065-1105, 2009. · Zbl 1155.42008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.