Berkane, Ahmed; Bradji, Abdallah Note on a \(W^{1,\infty}(L^2)\)-error estimate of a nonlinear finite volume scheme for a semi-linear heat equation. (English) Zbl 1488.65327 Arab J. Math. Sci. 27, No. 1, 104-118 (2021). MSC: 65M08 65M15 65N12 35K15 35K58 PDF BibTeX XML Cite \textit{A. Berkane} and \textit{A. Bradji}, Arab J. Math. Sci. 27, No. 1, 104--118 (2021; Zbl 1488.65327)
Bradji, Abdallah; Ziggaf, Moussa A convergence result of a linear SUSHI scheme using characteristics method for a semi-linear parabolic equation. (English) Zbl 1471.65112 Dimov, Ivan (ed.) et al., Advances in high performance computing. Results of the international conference on high performance computing, Borovets, Bulgaria, September 2–6, 2019. Cham: Springer. Stud. Comput. Intell. 902, 452-462 (2021). Reviewer: Victor Michel-Dansac (Strasbourg) MSC: 65M08 65M25 35K55 PDF BibTeX XML Cite \textit{A. Bradji} and \textit{M. Ziggaf}, Stud. Comput. Intell. 902, 452--462 (2021; Zbl 1471.65112) Full Text: DOI
Benkhaldoun, Fayssal; Bradji, Abdallah Convergence analysis of a finite volume gradient scheme for a linear parabolic equation using characteristic methods. (English) Zbl 1466.65090 Lirkov, Ivan (ed.) et al., Large-scale scientific computing. 12th international conference, LSSC 2019, Sozopol, Bulgaria, June 10–14, 2019. Revised selected papers. Cham: Springer. Lect. Notes Comput. Sci. 11958, 566-575 (2020). MSC: 65M08 65M25 65M12 PDF BibTeX XML Cite \textit{F. Benkhaldoun} and \textit{A. Bradji}, Lect. Notes Comput. Sci. 11958, 566--575 (2020; Zbl 1466.65090) Full Text: DOI
Bradji, Abdallah; Fuhrmann, Jürgen On the convergence and convergence order of finite volume gradient schemes for oblique derivative boundary value problems. (English) Zbl 1412.65101 Comput. Appl. Math. 37, No. 3, 2533-2565 (2018). Reviewer: Temur A. Jangveladze (Tbilisi) MSC: 65M08 65M15 35K15 PDF BibTeX XML Cite \textit{A. Bradji} and \textit{J. Fuhrmann}, Comput. Appl. Math. 37, No. 3, 2533--2565 (2018; Zbl 1412.65101) Full Text: DOI
Bradji, Abdallah An analysis for the convergence order of gradient schemes for semilinear parabolic equations. (English) Zbl 1357.65145 Comput. Math. Appl. 72, No. 5, 1287-1304 (2016). MSC: 65M12 35K55 PDF BibTeX XML Cite \textit{A. Bradji}, Comput. Math. Appl. 72, No. 5, 1287--1304 (2016; Zbl 1357.65145) Full Text: DOI
Bradji, Abdallah A full analysis of a new second order finite volume approximation based on a low-order scheme using general admissible spatial meshes for the unsteady one dimensional heat equation. (English) Zbl 1310.65098 J. Math. Anal. Appl. 416, No. 1, 258-288 (2014). MSC: 65M08 65M12 PDF BibTeX XML Cite \textit{A. Bradji}, J. Math. Anal. Appl. 416, No. 1, 258--288 (2014; Zbl 1310.65098) Full Text: DOI
Bradji, Abdallah An analysis of a second-order time accurate scheme for a finite volume method for parabolic equations on general nonconforming multidimensional spatial meshes. (English) Zbl 1343.65115 Appl. Math. Comput. 219, No. 11, 6354-6371 (2013). MSC: 65M08 PDF BibTeX XML Cite \textit{A. Bradji}, Appl. Math. Comput. 219, No. 11, 6354--6371 (2013; Zbl 1343.65115) Full Text: DOI
Bradji, Abdallah; Fuhrmann, Jürgen Some abstract error estimates of a finite volume scheme for a nonstationary heat equation on general nonconforming multidimensional spatial meshes. (English) Zbl 1274.65251 Appl. Math., Praha 58, No. 1, 1-38 (2013). Reviewer: Václav Kučera (Praha) MSC: 65M08 65M15 35K05 65M50 PDF BibTeX XML Cite \textit{A. Bradji} and \textit{J. Fuhrmann}, Appl. Math., Praha 58, No. 1, 1--38 (2013; Zbl 1274.65251) Full Text: DOI Link
Bradji, Abdallah; Fuhrmann, Jürgen Some error estimates for the discretization of parabolic equations on general multidimensional nonconforming spatial meshes. (English) Zbl 1317.65223 Dimov, Ivan (ed.) et al., Numerical methods and applications. 7th international conference, NMA 2010, Borovets, Bulgaria, August 20–24, 2010. Revised papers. Berlin: Springer (ISBN 978-3-642-18465-9/pbk). Lecture Notes in Computer Science 6046, 369-376 (2011). MSC: 65N15 35K57 65N08 PDF BibTeX XML Cite \textit{A. Bradji} and \textit{J. Fuhrmann}, Lect. Notes Comput. Sci. 6046, 369--376 (2011; Zbl 1317.65223) Full Text: DOI