Browning, Thomas L.; Feintzeig, Benjamin H.; Gates-Redburg, Robin; Librande, Jonah; Soiffer, Rory Classical limits of unbounded quantities by strict quantization. (English) Zbl 1454.81081 J. Math. Phys. 61, No. 11, 112305, 22 p. (2020). Summary: This paper extends the tools of \(C^*\)-algebraic strict quantization toward analyzing the classical limits of unbounded quantities in quantum theories. We introduce the approach first in the simple case of finite systems. Then, we apply this approach to analyze the classical limits of unbounded quantities in bosonic quantum field theories, with particular attention to number operators and Hamiltonians. The methods take classical limits in a representation-independent manner and so allow one to compare quantities appearing in inequivalent Fock space representations.©2020 American Institute of Physics Cited in 1 Document MSC: 81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis 81V73 Bosonic systems in quantum theory 81T70 Quantization in field theory; cohomological methods 81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory 30H20 Bergman spaces and Fock spaces PDFBibTeX XMLCite \textit{T. L. Browning} et al., J. Math. Phys. 61, No. 11, 112305, 22 p. (2020; Zbl 1454.81081) Full Text: DOI arXiv References: [1] Landsman, N. P., Foundations of Quantum Theory: From Classical Concepts to Operator Algebras (2017), Springer · Zbl 1380.81028 [2] Landsman, N. P., Mathematical Topics Between Classical and Quantum Mechanics (1998), Springer: Springer, New York · Zbl 0923.00008 [3] Landsman, N. P.; Butterfield, J.; Earman, J., Between classical and quantum, Handbook of the Philosophy of Physics, 417-553 (2007), Elsevier: Elsevier, New York [4] Rieffel, M. A., Deformation quantization of Heisenberg manifolds, Commun. Math. Phys., 122, 531-562 (1989) · Zbl 0679.46055 · doi:10.1007/bf01256492 [5] Rieffel, M., Deformation Quantization for Actions of \(\mathbb{R}^d (1993)\), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0798.46053 [6] Rieffel, M., Quantization and C^*-Algebras, Contemp. Math., 167, 66-97 (1994) · Zbl 0847.46036 · doi:10.1090/conm/167/1292010 [7] Waldmann, S., States and representations in deformation quantization, Rev. Math. Phys., 17, 1, 15-75 (2005) · Zbl 1138.53316 · doi:10.1142/s0129055x05002297 [8] Waldmann, S., Recent developments in deformation quantization, Quantum Mathematical Physics: A Bridge Between Mathematics and Physics, 421-439 (2016), Birkhäuser/Springer: Birkhäuser/Springer, Cham · Zbl 1338.81253 [9] Hollands, S.; Wald, R. M., Local Wick polynomials and time ordered products of quantum fields in curved spacetime, Commun. Math. Phys., 223, 289-326 (2001) · Zbl 0989.81081 · doi:10.1007/s002200100540 [10] Hollands, S.; Wald, R. M., Axiomatic quantum field theory in curved spacetime, Commun. Math. Phys., 293, 85-125 (2010) · Zbl 1193.81076 · doi:10.1007/s00220-009-0880-7 [11] Rejzner, K., Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians (2016), Springer: Springer, New York · Zbl 1347.81011 [12] Fragoulopoulou, M.; Inoue, A.; Kürsten, K.-D., Old and new results on Allan’s GB*-algebras, Banach Center Publ., 91, 169-178 (2010) · Zbl 1213.46041 · doi:10.4064/bc91-0-9 [13] Haag, R., Local Quantum Physics (1992), Springer: Springer, Berlin · Zbl 0777.46037 [14] Hepp, K., The classical limit for quantum mechanical correlation functions, Commun. Math. Phys., 35, 265-277 (1974) · doi:10.1007/bf01646348 [15] Ammari, Z.; Breteaux, S.; Nier, F., Quantum mean-field asymptotics and multiscale analysis, Tunis. J. Math., 1, 2, 221-272 (2019) · Zbl 1407.81117 · doi:10.2140/tunis.2019.1.221 [16] Combescure, M.; Robert, D., Coherent States and Applications in Mathematical Physics (2012), Springer: Springer, Dordrecht · Zbl 1243.81004 [17] Falconi, M., Cylindrical Wigner measures, Doc. Math., 23, 1677-1756 (2018) · Zbl 1419.81025 · doi:10.25537/dm.2018v23.1677-1756 [18] Feintzeig, B. H., The classical limit as an approximation, Philos. Sci., 87, 4, 612-539 (2020) · doi:10.1086/709731 [19] Landsman, N. P., Deformations of algebras of observables and the classical limit of quantum mechanics, Rev. Math. Phys., 5, 4, 775-806 (1993) · Zbl 0801.46094 · doi:10.1142/s0129055x93000243 [20] Landsman, N. P., Strict deformation quantization of a particle in external gravitational and Yang-Mills fields, J. Geom. Phys., 12, 93-132 (1993) · Zbl 0789.58081 · doi:10.1016/0393-0440(93)90010-c [21] Landsman, N. P., Twisted Lie group C^*-Algebras as strict quantizations, Lett. Math. Phys., 46, 181-188 (1998) · Zbl 0930.22007 · doi:10.1023/a:1007525214561 [22] Landsman, N. P., Spontaneous symmetry breaking in quantum systems: Emergence or reduction?, Stud. Hist. Philos. Mod. Phys., Part B, 44, 379-394 (2013) · Zbl 1281.81047 · doi:10.1016/j.shpsb.2013.07.003 [23] Binz, E.; Honegger, R.; Rieckers, A., Construction and uniqueness of the C^*-Weyl algebra over a general pre-symplectic space, J. Math. Phys., 45, 7, 2885-2907 (2004) · Zbl 1071.46034 · doi:10.1063/1.1757036 [24] Manuceau, J.; Sirugue, M.; Testard, D.; Verbeure, A., The smallest C^*-algebra for the canonical commutation relations, Commun. Math. Phys., 32, 231-243 (1974) · Zbl 0284.46039 · doi:10.1007/bf01645594 [25] Binz, E.; Honegger, R.; Rieckers, A., Field-theoretic Weyl quantization as a strict and continuous deformation quantization, Ann. Inst. Henri Poincaré, 5, 327-346 (2004) · Zbl 1088.81066 · doi:10.1007/s00023-004-0171-y [26] Honegger, R.; Rieckers, A.; Schlafer, L., Field-Theoretic Weyl deformation quantization of enlarged Poisson algebras, Symmetry, Integrability Geom.: Methods Appl., 4, 047-084 (2008) · Zbl 1156.46044 · doi:10.3842/SIGMA.2008.047 [27] Reed, M.; Simon, B., Functional Analysis (1980), Academic Press: Academic Press, New York · Zbl 0459.46001 [28] Bagarello, F.; Fragoulopoulou, M.; Inoue, A.; Trapani, C., The completion of a C^*-algebra with a locally convex topology, J. Oper. Theory, 56, 2, 357-376 (2006) · Zbl 1115.46044 [29] Bagarello, F.; Fragoulopoulou, M.; Inoue, A.; Trapani, C., Structure of locally convex quasi C^*-algebras, J. Math. Soc. Jpn., 60, 2, 511-549 (2008) · Zbl 1145.47059 · doi:10.2969/jmsj/06020511 [30] Bagarello, F.; Fragoulopoulou, M.; Inoue, A.; Trapani, C., Locally convex quasi C^*-normed algebras, J. Math. Anal. Appl., 366, 593-606 (2010) · Zbl 1201.46049 · doi:10.1016/j.jmaa.2010.01.059 [31] Fragoulopoulou, M.; Inoue, A.; Kürsten, K.-D., On the completion of a C^*-normed algebra under a locally convex algebra topology, Contemp. Math., 427, 155-166 (2007) · Zbl 1123.46039 · doi:10.1090/conm/427/08151 [32] Antoine, J.-P.; Inoue, A.; Trapani, C., Partial *-Algebras and Their Operator Realization (2002), Kluwer: Kluwer, Dordrecht · Zbl 1023.46004 [33] Inoue, A., Tomita-Takesaki Theory in Algebras of Unbounded Operators (1998), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0930.47042 [34] Schmüdgen, K., Unbounded Operation Algebras and Representation Theory (1990), Springer: Springer, Berlin [35] Berger, C. A.; Coburn, L. A., Toeplitz operators and quantum mechanics, J. Funct. Anal., 68, 273-399 (1986) · Zbl 0629.47022 · doi:10.1016/0022-1236(86)90099-6 [36] Waldmann, S., Positivity in Rieffel’s strict deformation quantization, 509-513 (2010), World Scientific: World Scientific, Hackensack, NJ · Zbl 1203.81086 [37] Honegger, R.; Rieckers, A., Some continuous field quantizations, equivalent to the C^*-Weyl quantization, Publications of the Research Institute for Mathematical Sciences (2005), Kyoto University · Zbl 1158.46311 [38] Feintzeig, B. H., On the choice of algebra for quantization, Philos. Sci., 85, 1, 102-125 (2018) · doi:10.1086/694811 [39] Feintzeig, B. H., The classical limit of a state on the Weyl algebra, J. Math. Phys., 59, 112102 (2018) · Zbl 1404.81145 · doi:10.1063/1.5013249 [40] Sumesh, K.; Sunder, V. S., On a tensor-analogue of the Schur product, Positivity, 20, 621-624 (2016) · Zbl 1364.46052 · doi:10.1007/s11117-015-0377-x [41] Kadison, R.; Ringrose, J., Fundamentals of the Theory of Operator Algebras (1997), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 0888.46039 [42] Honegger, R., On the continuous extension of states on the CCR algebra, Lett. Math. Phys., 42, 11-25 (1997) · Zbl 0906.47032 · doi:10.1023/a:1007370323608 [43] Fredenhagen, K.; Rejzner, K., Perturbative construction of models in algebraic quantum field theory, Advances in Algebraic Quantum Field Theory, 31-74 (2015), Springer · Zbl 1334.81059 [44] Reed, M.; Simon, B., Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness (1975), Academic Press: Academic Press, New York · Zbl 0308.47002 [45] Kay, B. S., A uniqueness result in the Segal-Weinless approach to linear Bose fields, J. Math. Phys., 20, 1712-1713 (1979) · doi:10.1063/1.524253 [46] Kay, B. S., The double-wedge algebra for quantum fields on schwarzschild and Minkowski spacetimes, Commun. Math. Phys., 100, 57-81 (1985) · Zbl 0578.46062 · doi:10.1007/bf01212687 [47] Wald, R., Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (1994), University of Chicago Press: University of Chicago Press, Chicago · Zbl 0842.53052 [48] Kay, B. S.; Wald, R. M., Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on spacetimes with a bifurcate killing horizon, Phys. Rep., 207, 49-136 (1991) · Zbl 0861.53074 · doi:10.1016/0370-1573(91)90015-e This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.