×

Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. (English) Zbl 1354.92023

Summary: This is an extensive overview of the core and special space-time and arbitrary Lagrangian-Eulerian (ALE) techniques developed by the authors’ research teams for patient-specific cardiovascular fluid-structure interaction (FSI) modeling. The core techniques are the ALE-based variational multiscale (ALE-VMS) method, the Deforming-Spatial-Domain/Stabilized Space-Time formulation, and the stabilized space-time FSI technique. The special techniques include methods for calculating an estimated zero-pressure arterial geometry, prestressing of the blood vessel wall, a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, techniques for using variable arterial wall thickness, mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, a recipe for pre-FSI computations that improve the convergence of the FSI computations, the Sequentially-Coupled Arterial FSI technique and its multiscale versions, techniques for the projection of fluid-structure interface stresses, calculation of the wall shear stress and oscillatory shear index, arterial-surface extraction and boundary condition techniques, and a scaling technique for specifying a more realistic volumetric flow rate. With results from earlier computations, we show how these core and special FSI techniques work in patient-specific cardiovascular simulations.

MSC:

92C35 Physiological flow
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76Z05 Physiological flows
92-08 Computational methods for problems pertaining to biology
92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Humphrey J (2002) Cardiovascular solid mechanics, cells, tissues, and organs. Springer, New York
[2] Holzapfel G (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, Chichester · Zbl 0980.74001
[3] Holzapfel G, Ogden R (2010) Constitutive modelling of arteries. Proc R Soc A 466:1551-1596 · Zbl 1197.74075
[4] Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002-2027. doi:10.1016/j.cma.2004.09.014 · Zbl 1118.74052 · doi:10.1016/j.cma.2004.09.014
[5] Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743-5753. doi:10.1016/j.cma.2005.08.023 · Zbl 1123.76035 · doi:10.1016/j.cma.2005.08.023
[6] Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques. Int J Numer Methods Fluids 54:855-900. doi:10.1002/fld.1430 · Zbl 1144.74044 · doi:10.1002/fld.1430
[7] Förster C, Wall W, Ramm E (2007) Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput Methods Appl Mech Eng 196:1278-1293 · Zbl 1173.74418
[8] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J Ser A 70:1224-1231 (in Japanese)
[9] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid-structure interactions with the deforming-spatial-domain/stabilized space-time formulation. Comput Methods Appl Mech Eng 195:1885-1895. doi:10.1016/j.cma.2005.05.050 · Zbl 1178.76241 · doi:10.1016/j.cma.2005.05.050
[10] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Influence of wall elasticity in patient-specific hemodynamic simulations. Comput Fluids 36:160-168. doi:10.1016/j.compfluid.2005.07.014 · Zbl 1113.76105 · doi:10.1016/j.compfluid.2005.07.014
[11] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43:151-159. doi:10.1007/s00466-008-0325-8 · Zbl 1169.74032 · doi:10.1007/s00466-008-0325-8
[12] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481-498
[13] Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77-89 · Zbl 1398.92056
[14] Bazilevs Y, del Alamo JC, Humphrey JD (2010) From imaging to prediction: emerging non-invasive methods in pediatric cardiology. Prog Pediatr Cardiol 30:81-89
[15] Figueroa C, Baek S, Taylor C, Humphrey J (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 199:3583-3602 · Zbl 1229.74097
[16] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Fluid-structure interaction modeling of aneurysmal conditions with high and normal blood pressures. Comput Mech 38:482-490. doi:10.1007/s00466-006-0065-6 · Zbl 1160.76061 · doi:10.1007/s00466-006-0065-6
[17] Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310-322 · Zbl 1161.74020
[18] Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007) Modeling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics. Int J Numer Methods Fluids 54:901-922. doi:10.1002/fld.1443 · Zbl 1276.76043 · doi:10.1002/fld.1443
[19] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2007) Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int J Numer Methods Fluids 54:995-1009. doi:10.1002/fld.1497 · Zbl 1317.76107 · doi:10.1002/fld.1497
[20] Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2007) YZβ discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int J Numer Methods Fluids 54:593-608. doi:10.1002/fld.1484 · Zbl 1207.76049 · doi:10.1002/fld.1484
[21] Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space-time fluid-structure interaction technique. Int J Numer Methods Fluids 57:601-629. doi:10.1002/fld.1633 · Zbl 1230.76054 · doi:10.1002/fld.1633
[22] Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3-37 · Zbl 1169.74015
[23] Isaksen JG, Bazilevs Y, Kvamsdal T, Zhang Y, Kaspersen JH, Waterloo K, Romner B, Ingebrigtsen T (2008) Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39:3172-3178
[24] Maynard JP, Nithiarasu P (2008) A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (LCG) method. Commun Numer Methods Eng 24:367-417 · Zbl 1137.92009
[25] Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524-3533. doi:10.1016/j.cma.2008.05.024 · Zbl 1229.74100 · doi:10.1016/j.cma.2008.05.024
[26] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2009) Fluid-structure interaction modeling of blood flow and cerebral aneurysm: significance of artery and aneurysm shapes. Comput Methods Appl Mech Eng 198:3613-3621. doi:10.1016/j.cma.2008.08.020 · Zbl 1229.74101 · doi:10.1016/j.cma.2008.08.020
[27] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534-3550 · Zbl 1229.74096
[28] Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010) Space-time finite element computation of arterial fluid-structure interactions with patient-specific data. Int J Numer Methods Biomed Eng 26:101-116. doi:10.1002/cnm.1241 · Zbl 1180.92023 · doi:10.1002/cnm.1241
[29] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17-29. doi:10.1007/s00466-009-0423-2 · Zbl 1261.92010 · doi:10.1007/s00466-009-0423-2
[30] Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010) Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput Mech 46:31-41. doi:10.1007/s00466-009-0425-0 · Zbl 1301.92019 · doi:10.1007/s00466-009-0425-0
[31] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Influence of wall thickness on fluid-structure interaction computations of cerebral aneurysms. Int J Numer Methods Biomed Eng 26:336-347. doi:10.1002/cnm.1289 · Zbl 1183.92050 · doi:10.1002/cnm.1289
[32] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2010) Role of 0D peripheral vasculature model in fluid-structure interaction modeling of aneurysms. Comput Mech 46:43-52. doi:10.1007/s00466-009-0439-7 · Zbl 1301.92020 · doi:10.1007/s00466-009-0439-7
[33] Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3-16 · Zbl 1301.92014
[34] Sugiyama K, Ii S, Takeuchi S, Takagi S, Matsumoto Y (2010) Full Eulerian simulations of biconcave neo-Hookean particles in a Poiseuille flow. Comput Mech 46:147-157 · Zbl 1301.76078
[35] Mut F, Aubry R, Lohner R, Cebral JR (2010) Fast numerical solutions of patient-specific blood flows in 3D arterial systems. Int J Numer Methods Biomed Eng 26:73-85 · Zbl 1180.92022
[36] Bevan RLT, Nithiarasu P, Loon RV, Sazanov I, Luckraz H, Garnham A (2010) Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation. Int J Numer Methods Fluids. doi:10.1002/fld.2313. Published online · Zbl 1203.92034 · doi:10.1002/fld.2313
[37] Chitra K, Sundararajan T, Vengadesan S, Nithiarasu P (2010) Non-Newtonian blood flow study in a model cavopulmonary vascular system. Int J Numer Methods Fluids. doi:10.1002/fld.2256. Published online · Zbl 1190.76168 · doi:10.1002/fld.2256
[38] Cebral JR, Mut F, Sforza D, Lohner R, Scrivano E, Lylyk P, Putnam C (2010) Clinical application of image-based CFD for cerebral aneurysms. Int J Numer Methods Biomed Eng. doi:10.1002/cnm.1373. Published online · Zbl 1219.92035 · doi:10.1002/cnm.1373
[39] Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid-structure interaction modeling of cerebral aneurysms. Int J Numer Methods Fluids 65:308-323. doi:10.1002/fld.2360 · Zbl 1203.92044 · doi:10.1002/fld.2360
[40] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) Nested and parallel sparse algorithms for arterial fluid mechanics computations with boundary layer mesh refinement. Int J Numer Methods Fluids 65:135-149. doi:10.1002/fld.2415 · Zbl 1427.76285 · doi:10.1002/fld.2415
[41] Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid-structure interaction computation of cerebral aneurysms. Int J Numer Methods Fluids 65:324-340. doi:10.1002/fld.2448 · Zbl 1203.92045 · doi:10.1002/fld.2448
[42] Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space-time fluid-structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665-1710. doi:10.1002/cnm.1433 · Zbl 1244.92036 · doi:10.1002/cnm.1433
[43] Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593-599
[44] Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid-structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908. doi:10.1115/1.4005071 · doi:10.1115/1.4005071
[45] Moghadam ME, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, Marsden AL, M. of Congenital Hearts Alliance (MOCHA) (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277-291. doi:10.1007/s00466-011-0599-0 · Zbl 1398.76102 · doi:10.1007/s00466-011-0599-0
[46] Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329-349 · Zbl 0482.76039
[47] Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26:27-36. doi:10.1109/2.237441 · Zbl 0875.76267 · doi:10.1109/2.237441
[48] Behr M, Johnson A, Kennedy J, Mittal S, Tezduyar T (1993) Computation of incompressible flows with implicit finite element implementations on the connection machine. Comput Methods Appl Mech Eng 108:99-118. doi:10.1016/0045-7825(93)90155-Q · Zbl 0784.76046 · doi:10.1016/0045-7825(93)90155-Q
[49] Tezduyar TE, Aliabadi SK, Behr M, Mittal S (1994) Massively parallel finite element simulation of compressible and incompressible flows. Comput Methods Appl Mech Eng 119:157-177. doi:10.1016/0045-7825(94)00082-4 · Zbl 0848.76040 · doi:10.1016/0045-7825(94)00082-4
[50] Mittal S, Tezduyar TE (1994) Massively parallel finite element computation of incompressible flows involving fluid-body interactions. Comput Methods Appl Mech Eng 112:253-282. doi:10.1016/0045-7825(94)90029-9 · Zbl 0846.76048 · doi:10.1016/0045-7825(94)90029-9
[51] Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73-94. doi:10.1016/0045-7825(94)00077-8 · Zbl 0848.76036 · doi:10.1016/0045-7825(94)00077-8
[52] Mittal S, Tezduyar TE (1995) Parallel finite element simulation of 3D incompressible flows: fluid-structure interactions. Int J Numer Methods Fluids 21:933-953. doi:10.1002/fld.1650211011 · Zbl 0873.76047 · doi:10.1002/fld.1650211011
[53] Aliabadi SK, Tezduyar TE (1995) Parallel fluid dynamics computations in aerospace applications. Int J Numer Methods Fluids 21:783-805. doi:10.1002/fld.1650211003 · Zbl 0862.76033 · doi:10.1002/fld.1650211003
[54] Tezduyar T, Aliabadi S, Behr M, Johnson A, Kalro V, Litke M (1996) Flow simulation and high performance computing. Comput Mech 18:397-412. doi:10.1007/BF00350249 · Zbl 0893.76046 · doi:10.1007/BF00350249
[55] Johnson AA, Tezduyar TE (1996) Simulation of multiple spheres falling in a liquid-filled tube. Comput Methods Appl Mech Eng 134:351-373. doi:10.1016/0045-7825(95)00988-4 · Zbl 0895.76046 · doi:10.1016/0045-7825(95)00988-4
[56] Johnson AA, Tezduyar TE (1997) Parallel computation of incompressible flows with complex geometries. Int J Numer Methods Fluids 24:1321-1340. doi:10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C · Zbl 0882.76044 · doi:10.1002/(SICI)1097-0363(199706)24:12<1321::AID-FLD562>3.3.CO;2-C
[57] Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130-143. doi:10.1007/s004660050393 · Zbl 0949.76049 · doi:10.1007/s004660050393
[58] Behr M, Tezduyar T (1999) The shear-slip mesh update method. Comput Methods Appl Mech Eng 174:261-274. doi:10.1016/S0045-7825(98)00299-0 · Zbl 0959.76037 · doi:10.1016/S0045-7825(98)00299-0
[59] Kalro V, Tezduyar TE (2000) A parallel 3D computational method for fluid-structure interactions in parachute systems. Comput Methods Appl Mech Eng 190:321-332. doi:10.1016/S0045-7825(00)00204-8 · Zbl 0993.76044 · doi:10.1016/S0045-7825(00)00204-8
[60] Stein K, Benney R, Kalro V, Tezduyar TE, Leonard J, Accorsi M (2000) Parachute fluid-structure interactions: 3-D computation. Comput Methods Appl Mech Eng 190:373-386. doi:10.1016/S0045-7825(00)00208-5 · Zbl 0973.76055 · doi:10.1016/S0045-7825(00)00208-5
[61] Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83-130. doi:10.1007/BF02897870 · Zbl 1039.76037 · doi:10.1007/BF02897870
[62] Tezduyar T, Osawa Y (2001) Fluid-structure interactions of a parachute crossing the far wake of an aircraft. Comput Methods Appl Mech Eng 191:717-726. doi:10.1016/S0045-7825(01)00311-5 · Zbl 1113.76407 · doi:10.1016/S0045-7825(01)00311-5
[63] Stein K, Benney R, Tezduyar T, Potvin J (2001) Fluid-structure interactions of a cross parachute: numerical simulation. Comput Methods Appl Mech Eng 191:673-687. doi:10.1016/S0045-7825(01)00312-7 · Zbl 0999.76085 · doi:10.1016/S0045-7825(01)00312-7
[64] Ohayon R (2001) Reduced symmetric models for modal analysis of internal structural-acoustic and hydroelastic-sloshing systems. Comput Methods Appl Mech Eng 190:3009-3019 · Zbl 0971.74032
[65] Behr M, Tezduyar T (2001) Shear-slip mesh update in 3D computation of complex flow problems with rotating mechanical components. Comput Methods Appl Mech Eng 190:3189-3200. doi:10.1016/S0045-7825(00)00388-1 · Zbl 1012.76042 · doi:10.1016/S0045-7825(00)00388-1
[66] Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58-63. doi:10.1115/1.1530635 · Zbl 1110.74689 · doi:10.1115/1.1530635
[67] Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019-2032. doi:10.1016/j.cma.2003.12.046 · Zbl 1067.74587 · doi:10.1016/j.cma.2003.12.046
[68] van Brummelen EH, de Borst R (2005) On the nonnormality of subiteration for a fluid-structure interaction problem. SIAM J Sci Comput 27:599-621 · Zbl 1136.65334
[69] Tezduyar TE (2007) Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput Fluids 36:191-206. doi:10.1016/j.compfluid.2005.02.011 · Zbl 1177.76202 · doi:10.1016/j.compfluid.2005.02.011
[70] Brenk, M.; Bungartz, H-J; Mehl, M.; Neckel, T.; Bungartz, H-J (ed.); Schafer, M. (ed.), Fluid-structure interaction on Cartesian grids: flow simulation and coupling environment, No. 53, 233-269 (2006), Berlin · Zbl 1323.76047
[71] Lohner, R.; Cebral, JR; Yang, C.; Baum, JD; Mestreau, EL; Soto, O.; Bungartz, H-J (ed.); Schafer, M. (ed.), Extending the range of applicability of the loose coupling approach for FSI simulations, No. 53, 82-100 (2006), Berlin · Zbl 1323.74091
[72] Bletzinger, K-U; Wuchner, R.; Kupzok, A.; Bungartz, H-J (ed.); Schafer, M. (ed.), Algorithmic treatment of shells and free form-membranes in FSI, No. 53, 336-355 (2006), Berlin · Zbl 1323.74078
[73] Sawada T, Hisada T (2007) Fluid-structure interaction analysis of the two dimensional flag-in-wind problem by an interface tracking ALE finite element method. Comput Fluids 36:136-146 · Zbl 1181.76099
[74] Takizawa K, Yabe T, Tsugawa Y, Tezduyar TE, Mizoe H (2007) Computation of free-surface flows and fluid-object interactions with the CIP method based on adaptive meshless Soroban grids. Comput Mech 40:167-183. doi:10.1007/s00466-006-0093-2 · Zbl 1177.76300 · doi:10.1007/s00466-006-0093-2
[75] Takizawa K, Tanizawa K, Yabe T, Tezduyar TE (2007) Ship hydrodynamics computations with the CIP method based on adaptive Soroban grids. Int J Numer Methods Fluids 54:1011-1019. doi:10.1002/fld.1466 · Zbl 1375.76153 · doi:10.1002/fld.1466
[76] Yabe T, Takizawa K, Tezduyar TE, Im H-N (2007) Computation of fluid-solid and fluid-fluid interfaces with the CIP method based on adaptive Soroban grids—an overview. Int J Numer Methods Fluids 54:841-853. doi:10.1002/fld.1473 · Zbl 1375.76154 · doi:10.1002/fld.1473
[77] Manguoglu M, Sameh AH, Tezduyar TE, Sathe S (2008) A nested iterative scheme for computation of incompressible flows in long domains. Comput Mech 43:73-80. doi:10.1007/s00466-008-0276-0 · Zbl 1279.76024 · doi:10.1007/s00466-008-0276-0
[78] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods. Comput Mech 43:39-49. doi:10.1007/s00466-008-0261-7 · Zbl 1310.74049 · doi:10.1007/s00466-008-0261-7
[79] Tezduyar TE, Sathe S, Pausewang J, Schwaab M, Christopher J, Crabtree J (2008) Fluid-structure interaction modeling of ringsail parachutes. Comput Mech 43:133-142. doi:10.1007/s00466-008-0260-8 · Zbl 1209.74022 · doi:10.1007/s00466-008-0260-8
[80] Sathe S, Tezduyar TE (2008) Modeling of fluid-structure interactions with the space-time finite elements: contact problems. Comput Mech 43:51-60. doi:10.1007/s00466-008-0299-6 · Zbl 1297.74129 · doi:10.1007/s00466-008-0299-6
[81] Dettmer WG, Peric D (2008) On the coupling between fluid flow and mesh motion in the modelling of fluid-structure interaction. Comput Mech 43:81-90 · Zbl 1235.74272
[82] Bazilevs Y, Hughes TJR (2008) NURBS-based isogeometric analysis for the computation of flows about rotating components. Comput Mech 43:143-150 · Zbl 1171.76043
[83] Heil M, Hazel AL, Boyle J (2008) Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput Mech 43:91-101 · Zbl 1309.76126
[84] Sternel DC, Schaefer M, Heck M, Yigit S (2008) Efficiency and accuracy of fluid-structure interaction simulations using an implicit partitioned approach. Comput Mech 43:103-113 · Zbl 1234.74053
[85] Mehl M, Brenk M, Bungartz H-J, Daubner K, Muntean IL, Neckel T (2008) An Eulerian approach for partitioned fluid-structure simulations on Cartesian grids. Comput Mech 43:115-124 · Zbl 1228.74024
[86] Idelsohn SR, Marti J, Souto-Iglesias A, Onate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43:125-132 · Zbl 1177.74140
[87] Idelsohn SR, Marti J, Limache A, Onate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762-1776 · Zbl 1194.74415
[88] Manguoglu M, Sameh AH, Saied F, Tezduyar TE, Sathe S (2009) Preconditioning techniques for nonsymmetric linear systems in computation of incompressible flows. J Appl Mech 76:021204. doi:10.1115/1.3059576 · doi:10.1115/1.3059576
[89] Idelsohn SR, Pin FD, Rossi R, Onate E (2009) Fluid-structure interaction problems with strong added-mass effect. Int J Numer Methods Eng 80:1261-1294 · Zbl 1183.74059
[90] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2010) Solution of linear systems in arterial fluid mechanics computations with boundary layer mesh refinement. Comput Mech 46:83-89. doi:10.1007/s00466-009-0426-z · Zbl 1301.76087 · doi:10.1007/s00466-009-0426-z
[91] Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3D fluid-structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. Comput Mech 46:53-67 · Zbl 1301.74018
[92] Calderer R, Masud A (2010) A multiscale stabilized ALE formulation for incompressible flows with moving boundaries. Comput Mech 46:185-197 · Zbl 1301.76057
[93] Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201-1218. doi:10.1002/fld.2221 · Zbl 1427.76148 · doi:10.1002/fld.2221
[94] Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff-Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403-2416 · Zbl 1231.74482
[95] Ryzhakov PB, Rossi R, Idelsohn SR, Onate E (2010) A monolithic Lagrangian approach for fluid-structure interaction problems. Comput Mech 46:883-899 · Zbl 1344.74016
[96] Bazilevs Y, Hsu M-C, Akkerman I, Wright S, Takizawa K, Henicke B, Spielman T, Tezduyar TE (2011) 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int J Numer Methods Fluids 65:207-235. doi:10.1002/fld.2400 · Zbl 1428.76086 · doi:10.1002/fld.2400
[97] Bazilevs Y, Hsu M-C, Kiendl J, Wüchner R, Bletzinger K-U (2011) 3D simulation of wind turbine rotors at full scale. Part II: fluid-structure interaction modeling with composite blades. Int J Numer Methods Fluids 65:236-253 · Zbl 1428.76087
[98] Takizawa K, Moorman C, Wright S, Spielman T, Tezduyar TE (2011) Fluid-structure interaction modeling and performance analysis of the Orion spacecraft parachutes. Int J Numer Methods Fluids 65:271-285. doi:10.1002/fld.2348 · Zbl 1428.76011 · doi:10.1002/fld.2348
[99] Takizawa K, Wright S, Moorman C, Tezduyar TE (2011) Fluid-structure interaction modeling of parachute clusters. Int J Numer Methods Fluids 65:286-307. doi:10.1002/fld.2359 · Zbl 1426.76312 · doi:10.1002/fld.2359
[100] Takizawa K, Tezduyar TE (2011) Multiscale space-time fluid-structure interaction techniques. Comput Mech 48:247-267. doi:10.1007/s00466-011-0571-z · Zbl 1398.76128 · doi:10.1007/s00466-011-0571-z
[101] Takizawa K, Spielman T, Tezduyar TE (2011) Space-time FSI modeling and dynamical analysis of spacecraft parachutes and parachute clusters. Comput Mech 48:345-364. doi:10.1007/s00466-011-0590-9 · Zbl 1398.74095 · doi:10.1007/s00466-011-0590-9
[102] Takizawa K, Spielman T, Moorman C, Tezduyar TE (2012) Fluid-structure interaction modeling of spacecraft parachutes for simulation-based design. J Appl Mech 79:010907. doi:10.1115/1.4005070 · doi:10.1115/1.4005070
[103] Takizawa K, Henicke B, Puntel A, Spielman T, Tezduyar TE (2012) Space-time computational techniques for the aerodynamics of flapping wings. J Appl Mech 79:010903. doi:10.1115/1.4005073 · doi:10.1115/1.4005073
[104] Takizawa K, Henicke B, Montes D, Tezduyar TE, Hsu M-C, Bazilevs Y (2011) Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput Mech 48:647-657. doi:10.1007/s00466-011-0614-5 · Zbl 1334.74032 · doi:10.1007/s00466-011-0614-5
[105] Sawada T, Tezuka A (2011) LLM and X-FEM based interface modeling of fluid-thin structure interactions on a non-interface-fitted mesh. Comput Mech 48:319-332. doi:10.1007/s00466-011-0600-y · Zbl 1398.74090 · doi:10.1007/s00466-011-0600-y
[106] Manguoglu M, Takizawa K, Sameh AH, Tezduyar TE (2011) A parallel sparse algorithm targeting arterial fluid mechanics computations. Comput Mech 48:377-384. doi:10.1007/s00466-011-0619-0 · Zbl 1398.76115 · doi:10.1007/s00466-011-0619-0
[107] Onate E, Celigueta MA, Idelsohn SR, Salazar F, Suarez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48:307-318. doi:10.1007/s00466-011-0617-2 · Zbl 1398.76120 · doi:10.1007/s00466-011-0617-2
[108] Takase S, Kashiyama K, Tanaka S, Tezduyar TE (2011) Space-time SUPG finite element computation of shallow-water flows with moving shorelines. Comput Mech 48:293-306. doi:10.1007/s00466-011-0618-1 · Zbl 1398.76126 · doi:10.1007/s00466-011-0618-1
[109] Nagaoka S, Nakabayashi Y, Yagawa G, Kim YJ (2011) Accurate fluid-structure interaction computations using elements without mid-side nodes. Comput Mech 48:269-276. doi:10.1007/s00466-011-0620-7 · Zbl 1398.76119 · doi:10.1007/s00466-011-0620-7
[110] Takizawa K, Tezduyar TE (2012) Computational methods for parachute fluid-structure interactions. Arch Comput Methods Eng 19:125-169. doi:10.1007/s11831-012-9070-4 · Zbl 1354.76113 · doi:10.1007/s11831-012-9070-4
[111] Gerbeau J, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical images. Comput Struct 83:155-165
[112] Fernandez M, Moubachir M (2005) A Newton method using exact jacobians for solving fluid-structure coupling. Comput Struct 83:127-142
[113] Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1-44. doi:10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[114] Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput Methods Appl Mech Eng 94:339-351. doi:10.1016/0045-7825(92)90059-S · Zbl 0745.76044 · doi:10.1016/0045-7825(92)90059-S
[115] Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94:353-371. doi:10.1016/0045-7825(92)90060-W · Zbl 0745.76045 · doi:10.1016/0045-7825(92)90060-W
[116] Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555-575. doi:10.1002/fld.505 · Zbl 1032.76605 · doi:10.1002/fld.505
[117] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199-259 · Zbl 0497.76041
[118] Tezduyar TE, Mittal S, Ray SE, Shih R (1992) Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput Methods Appl Mech Eng 95:221-242. doi:10.1016/0045-7825(92)90141-6 · Zbl 0756.76048 · doi:10.1016/0045-7825(92)90141-6
[119] Hughes TJR, Franca LP, Balestra M (1986) A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput Methods Appl Mech Eng 59:85-99 · Zbl 0622.76077
[120] Hughes TJR, Hulbert GM (1988) Space-time finite element methods for elastodynamics: formulations and error estimates. Comput Methods Appl Mech Eng 66:339-363 · Zbl 0616.73063
[121] Tezduyar, TE; Behr, M.; Mittal, S.; Johnson, AA, Computation of unsteady incompressible flows with the finite element methods—space-time formulations, iterative strategies and massively parallel implementations, 7-24 (1992), New York
[122] Tezduyar, TE; Stein, E. (ed.); Borst, RD (ed.); Hughes, TJR (ed.), Finite element methods for fluid dynamics with moving boundaries and interfaces, No. 3 (2004), New York
[123] Tezduyar, TE; Takizawa, K.; Christopher, J.; Hartmann, S. (ed.); Meister, A. (ed.); Schaefer, M. (ed.); Turek, S. (ed.), Multiscale sequentially-coupled arterial fluid-structure interaction (SCAFSI) technique, 231-252 (2009), Kassel
[124] Tezduyar, TE; Cragin, T.; Sathe, S.; Nanna, B.; Onate, E. (ed.); Garcia, J. (ed.); Bergan, P. (ed.); Kvamsdal, T. (ed.), FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry (2007), Barcelona
[125] Tezduyar, TE; Schwaab, M.; Sathe, S.; Onate, E. (ed.); Papadrakakis, M. (ed.); Schrefler, B. (ed.), Arterial fluid mechanics with the sequentially-coupled arterial FSI technique (2007), Barcelona
[126] Wells RE Jr, Merrill EW (1961) Shear rate dependence of the viscosity of whole blood and plasma. Science 133:763-764
[127] Simo J, Hughes T (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[128] Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130:57-79 · Zbl 0861.73068
[129] Stuparu, M., Human heart valves. Hyperelastic material modeling (2002), Romania
[130] Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173-201 · Zbl 1169.76352
[131] Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge · Zbl 0628.65098
[132] Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Methods Appl Mech Eng 45:217-284. doi:10.1016/0045-7825(84)90157-9 · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[133] Tezduyar TE, Park YJ (1986) Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput Methods Appl Mech Eng 59:307-325. doi:10.1016/0045-7825(86)90003-4 · Zbl 0593.76096 · doi:10.1016/0045-7825(86)90003-4
[134] Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411-430. doi:10.1016/S0045-7825(00)00211-5 · Zbl 0973.76057 · doi:10.1016/S0045-7825(00)00211-5
[135] Hughes, T.; Scovazzi, G.; Franca, L.; Stein, E. (ed.); Borst, R. (ed.); Hughes, T. (ed.), Multiscale and stabilized methods, No. 3 (2004), New York
[136] Hughes TJR (1995) Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput Methods Appl Mech Eng 127:387-401 · Zbl 0866.76044
[137] Hughes TJR, Feijóo G, Mazzei L, Quincy JB (1998) The variational multiscale method—a paradigm for computational mechanics. Comput Methods Appl Mech Eng 166:3-24 · Zbl 1017.65525
[138] Hughes TJR, Sangalli G (2007) Variational multiscale analysis: the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J Numer Anal 45:539-557 · Zbl 1152.65111
[139] Akin JE, Tezduyar T, Ungor M, Mittal S (2003) Stabilization parameters and Smagorinsky turbulence model. J Appl Mech 70:2-9. doi:10.1115/1.1526569 · Zbl 1110.74311 · doi:10.1115/1.1526569
[140] Akin JE, Tezduyar TE (2004) Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput Methods Appl Mech Eng 193:1909-1922. doi:10.1016/j.cma.2003.12.050 · Zbl 1067.76557 · doi:10.1016/j.cma.2003.12.050
[141] Catabriga L, Coutinho ALGA, Tezduyar TE (2005) Compressible flow SUPG parameters computed from element matrices. Commun Numer Methods Eng 21:465-476. doi:10.1002/cnm.759 · Zbl 1329.76161 · doi:10.1002/cnm.759
[142] Tezduyar TE, Senga M, Vicker D (2006) Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZβ shock-capturing. Comput Mech 38:469-481. doi:10.1007/s00466-005-0025-6 · Zbl 1176.76077 · doi:10.1007/s00466-005-0025-6
[143] Tezduyar TE, Sathe S (2006) Enhanced-discretization selective stabilization procedure (EDSSP). Comput Mech 38:456-468. doi:10.1007/s00466-006-0056-7 · Zbl 1187.76712 · doi:10.1007/s00466-006-0056-7
[144] Onate E, Valls A, Garcia J (2006) FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers. Comput Mech 38:440-455 · Zbl 1160.76027
[145] Corsini A, Rispoli F, Santoriello A, Tezduyar TE (2006) Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput Mech 38:356-364. doi:10.1007/s00466-006-0045-x · Zbl 1177.76192 · doi:10.1007/s00466-006-0045-x
[146] Catabriga L, Coutinho ALGA, Tezduyar TE (2006) Compressible flow SUPG parameters computed from degree-of-freedom submatrices. Comput Mech 38:334-343. doi:10.1007/s00466-006-0033-1 · Zbl 1176.76061 · doi:10.1007/s00466-006-0033-1
[147] Rispoli F, Corsini A, Tezduyar TE (2007) Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput Fluids 36:121-126. doi:10.1016/j.compfluid.2005.07.004 · Zbl 1181.76098 · doi:10.1016/j.compfluid.2005.07.004
[148] Corsini A, Iossa C, Rispoli F, Tezduyar TE (2010) A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput Mech 46:159-167. doi:10.1007/s00466-009-0441-0 · Zbl 1301.76045 · doi:10.1007/s00466-009-0441-0
[149] Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828-840. doi:10.1016/j.cma.2009.06.019 · Zbl 1406.76028 · doi:10.1016/j.cma.2009.06.019
[150] Corsini A, Rispoli F, Tezduyar TE (2011) Stabilized finite element computation of NOx emission in aero-engine combustors. Int J Numer Methods Fluids 65:254-270. doi:10.1002/fld.2451 · Zbl 1426.76240 · doi:10.1002/fld.2451
[151] Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier-Stokes equations. Comput Methods Appl Mech Eng 89:141-219
[152] Lo A (1982) Nonlinear dynamic analysis of cable and membrane structure. Ph.D. thesis, Department of Civil Engineering, Oregon State University
[153] Benney, RJ; Stein, KR; Leonard, JW; Accorsi, ML, Current 3-D structural dynamic finite element modeling capabilities, San Francisco, California
[154] Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856-869 · Zbl 0599.65018
[155] Fujisawa T, Inaba M, Yagawa G (2003) Parallel computing of high-speed compressible flows using a node-based finite element method. Int J Numer Methods Fluids 58:481-511 · Zbl 1032.76594
[156] Tezduyar TE (2007) Finite elements in fluids: special methods and enhanced solution techniques. Comput Fluids 36:207-223. doi:10.1016/j.compfluid.2005.02.010 · Zbl 1177.76203 · doi:10.1016/j.compfluid.2005.02.010
[157] Johan Z, Mathur KK, Johnsson SL, Hughes TJR (1995) A case study in parallel computation: Viscous flow around an Onera M6 wing. Int J Numer Methods Fluids 21:877-884 · Zbl 0875.76256
[158] Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulations. Comput Struct 35:445-472. doi:10.1016/0045-7949(90)90069-E · Zbl 0719.76051 · doi:10.1016/0045-7949(90)90069-E
[159] Tezduyar TE, Mittal S, Shih R (1991) Time-accurate incompressible flow computations with quadrilateral velocity-pressure elements. Comput Methods Appl Mech Eng 87:363-384. doi:10.1016/0045-7825(91)90014-W · Zbl 0760.76052 · doi:10.1016/0045-7825(91)90014-W
[160] Hilber HM, Hughes TJR, Taylor RL (1977) Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct Dyn 5:283-292
[161] Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 158:975-987
[162] Green AE, Naghdi PM (1976) A derivation of equations for wave propagation in water of variable depth. J Fluid Mech 78:237-246 · Zbl 0351.76014
[163] McPhail, T.; Warren, J., An interactive editor for deforming volumetric data, Singapore
[164] Chung J, Hulbert G (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60:371-375 · Zbl 0775.73337
[165] Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051-1056
[166] Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553-563
[167] Frank O (1899) Die Grundform des arteriellen Pulses. Z Biol 37:483-586
[168] Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561-582 · Zbl 1007.74035
[169] Vignon-Clementel I, Figueroa C, Jansen K, Taylor C (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776-3796 · Zbl 1175.76098
[170] Tezduyar, TE; Takizawa, K.; Christopher, J.; Kvamsdal, T. (ed.); Pettersen, B. (ed.); Bergan, P. (ed.); Onate, E. (ed.); Garcia, J. (ed.), Sequentially-coupled FSI technique (2009), Barcelona
[171] Tezduyar, TE; Takizawa, K.; Christopher, J.; Moorman, C.; Wright, S.; Kvamsdal, T. (ed.); Pettersen, B. (ed.); Bergan, P. (ed.); Onate, E. (ed.); Garcia, J. (ed.), Interface projection techniques for complex FSI problems (2009), Barcelona
[172] Jansen K, Whiting C, Hulbert G (1999) A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305-319 · Zbl 0973.76048
[173] Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135-4195 · Zbl 1151.74419
[174] Zhang Y, Bazilevs Y, Goswami S, Bajaj C, Hughes TJR (2007) Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 196:2943-2959 · Zbl 1121.76076
[175] Zhang Y, Wang W, Liang X, Bazilevs Y, Hsu M-C, Kvamsdal T, Brekken R, Isaksen J (2009) High-fidelity tetrahedral mesh generation from medical imaging data for fluid-structure interaction analysis of cerebral aneurysms. Comput Model Eng Sci 42:131-150
[176] Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240-248
[177] Petrossian E, Reddy VM, Collins KK, Culbertson CB, MacDonald MJ, Lamberti JJ, Reinhartz O, Mainwaring RD, Francis PD, Malhotra SP, Gremmels DB, Suleman S, Hanley FL (2006) The extracardiac conduit Fontan operation using minimal approach extracorporeal circulation: early and midterm outcomes. J Thorac Cardiovasc Surg 132:1054-1063
[178] Ensley A, Ramuzat A, Healy T, Chatzimavroudis G, Lucas C, Sharma S, Pettigrew R, Yoganathan A (2000) Fluid mechanic assessment of the total cavopulmonary connection using magnetic resonance phase velocity mapping and digital particle image velocimetry. Ann Biomed Eng 28:1172-1183
[179] Khunatorn Y, Mahalingam S, DeGroff C, Shandas R (2002) Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J Biomech Eng 124:364-377
[180] Bove E, de Leval M, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040-1047
[181] Migliavacca F, Dubini G, Bove E, de Leval M (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:805-813
[182] Marsden A, Bernstein A, Reddy V, Shadden S, Spilker R, Chan F, Taylor C, Feinstein J (2009) Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. J Thorac Cardiovasc Surg 137:394-403
[183] Marsden A, Vignon-Clementel I, Chan F, Feinstein J, Taylor C (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35:250-263
[184] de Leval MR, Dubini G, Migliavacca F, Jalali H, Camporini G, Redington A, Pietrabissa R (1996) Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavo-pulmonary connections. J Thorac Cardiovasc Surg 111:502-513
[185] Dubini G, de Leval MR, Pietrabissa R, Montevecchi FM, Fumero R (1996) A numerical fluid mechanical study of repaired congenital heart defects: application to the total cavopulmonary connection. J Biomech 29:111-121
[186] Migliavacca F, Dubini G, Pietrabissa R, de Leval MR (1997) Computational transient simulations with varying degree and shape of pulmonic stenosis in models of the bidirectional cavopulmonary anastomosis. Med Eng Phys 19:394-403
[187] Sahni O, Muller J, Jansen K, Shephard M, Taylor C (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Appl Mech Eng 195:5634-5655 · Zbl 1125.76046
[188] Shachar G, Fuhrman B, Wang Y, Lucas R Jr, Lock J (1982) Rest and exercise hemodynamics after the Fontan procedure. Circulation 65:1043-1048
[189] Giardini A, Balducci A, Specchia S, Gaetano G, Bonvicini M, Picchio FM (2008) Effect of sildenafil on haemodynamic response to exercise capacity in Fontan patients. Eur Heart J 29:1681-1687
[190] Hjortdal VE, Emmertsen K, Stenbog E, Frund T, Rahbek Schmidt M, Kromann O, Sorensen K, Pedersen EM (2003) Effects of exercise and respiration on blood flow in total cavopulmonary connection: a real-time magnetic resonance flow study. Circulation 108:1227-1231
[191] Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE (2002) Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 87:554-558
[192] Hetzer R, Jurmann MJ, Potapov EV, Hennig E, Stiller B, Muller JH, Weng Y (2002) Heart assist systems: current status. Hertz 20:407
[193] Wootton DM, Ku DN (1999) Fluid mechanics of vascular systems, diseases, and thrombosis. Annu Rev Biomed Eng 1:299
[194] Liu SQ, Zhong L, Goldman J (2002) Control of the shape of a thrombus-neointima-like structure by blood shear stress. J Biomech Eng 124:30
[195] Kar B, Delgado RM III, Frazier OH, Gregoric I, Harting MT, Wadia Y, Myers T, Moser R, Freund J (2005) The effect of LVAD aortic outflow-graft placement on hemodynamics and flow. Texas Heart Inst J 32:294-298
[196] Gohean JR (2007) A closed-loop multi-scale model of the cardiovascular system for evaluation of ventricular devices. Master’s thesis, University of Texas, Austin, May 2007 · Zbl 1181.76099
[197] Calo V, Brasher N, Bazilevs Y, Hughes T (2008) Multiphysics model for blood flow and drug transport with application to patient-specific coronary artery flow. Comput Mech 43:161-177 · Zbl 1169.76066
[198] Olufsen MS (1988) Modeling of the arterial system with reference to an anesthesia simulator. Ph.D. thesis, Roskilde University, 1998 · Zbl 0873.76047
[199] Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88:2235-2247
[200] Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112:1018-1031
[201] Shaaban AM, Duerinckx AJ (2000) Wall shear stress and early atherosclerosis: a review. Am J Roentgenol 174:1657-1665
[202] Levesque MJ, Nerem R (1985) The elongation and orientation of cultured endothelial cells in response to shear stress. J Biomech Eng 107:341-347
[203] Levesque MJ, Liepsch D, Moravec S, Nerem R (1986) Correlation of endothelial cell shape and wall shear stress in a stenosed dog aorta. Arteriosclerosis 6:220-229
[204] Okano M, Yoshida Y (1994) Junction complexes of endothelial cells in atherosclerosis-prone and atherosclerosis-resistant regions on flow dividers of brachiocephalic bifurcations in the rabbit aorta. Biorheology 31:155-161
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.