Khari, Kartikay; Kumar, Vivek An efficient numerical technique for solving nonlinear singularly perturbed reaction diffusion problem. (English) Zbl 07562013 J. Math. Chem. 60, No. 7, 1356-1382 (2022). MSC: 92Exx PDF BibTeX XML Cite \textit{K. Khari} and \textit{V. Kumar}, J. Math. Chem. 60, No. 7, 1356--1382 (2022; Zbl 07562013) Full Text: DOI OpenURL
Kumar, Sunil; Sumit; Vigo-Aguiar, Jesus A high order convergent numerical method for singularly perturbed time dependent problems using mesh equidistribution. (English) Zbl 07538462 Math. Comput. Simul. 199, 287-306 (2022). MSC: 65-XX 76-XX PDF BibTeX XML Cite \textit{S. Kumar} et al., Math. Comput. Simul. 199, 287--306 (2022; Zbl 07538462) Full Text: DOI OpenURL
Gupta, Aastha; Kaushik, Aditya A higher-order hybrid finite difference method based on grid equidistribution for fourth-order singularly perturbed differential equations. (English) Zbl 1486.65080 J. Appl. Math. Comput. 68, No. 2, 1163-1191 (2022). MSC: 65L11 65L10 65L12 PDF BibTeX XML Cite \textit{A. Gupta} and \textit{A. Kaushik}, J. Appl. Math. Comput. 68, No. 2, 1163--1191 (2022; Zbl 1486.65080) Full Text: DOI OpenURL
Kumar, Sunil; Kumar, Shashikant; Sumit A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary condition. (English) Zbl 1480.65186 Numer. Algorithms 89, No. 2, 791-809 (2022). MSC: 65L11 65R20 PDF BibTeX XML Cite \textit{S. Kumar} et al., Numer. Algorithms 89, No. 2, 791--809 (2022; Zbl 1480.65186) Full Text: DOI OpenURL
Kumar, Sunil; Sumit; Vigo-Aguiar, Jesus A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection-diffusion problems. (English) Zbl 07444605 J. Comput. Appl. Math. 404, Article ID 113273, 15 p. (2022). MSC: 65Mxx 35Kxx PDF BibTeX XML Cite \textit{S. Kumar} et al., J. Comput. Appl. Math. 404, Article ID 113273, 15 p. (2022; Zbl 07444605) Full Text: DOI OpenURL
Shakti, Deepti; Mohapatra, Jugal; Das, Pratibhamoy; Vigo-Aguiar, Jesus A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction-diffusion problems with arbitrary small diffusion terms. (English) Zbl 07444599 J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022). MSC: 65Mxx 35B25 35B50 35B51 35K51 35K57 65L11 76M45 65M06 65M15 65M50 65N50 PDF BibTeX XML Cite \textit{D. Shakti} et al., J. Comput. Appl. Math. 404, Article ID 113167, 16 p. (2022; Zbl 07444599) Full Text: DOI OpenURL
Kaushik, Aditya; Kumar, Vijayant; Sharma, Manju; Sharma, Nitika A modified graded mesh and higher order finite element method for singularly perturbed reaction-diffusion problems. (English) Zbl 07331071 Math. Comput. Simul. 185, 486-496 (2021). MSC: 65-XX 35-XX PDF BibTeX XML Cite \textit{A. Kaushik} et al., Math. Comput. Simul. 185, 486--496 (2021; Zbl 07331071) Full Text: DOI OpenURL
Gupta, Aastha; Kaushik, Aditya A robust spline difference method for Robin-type reaction-diffusion problem using grid equidistribution. (English) Zbl 07330169 Appl. Math. Comput. 390, Article ID 125597, 17 p. (2021). MSC: 65-XX 41-XX PDF BibTeX XML Cite \textit{A. Gupta} and \textit{A. Kaushik}, Appl. Math. Comput. 390, Article ID 125597, 17 p. (2021; Zbl 07330169) Full Text: DOI OpenURL
Clavero, C.; Jorge, J. C. An efficient and uniformly convergent scheme for one-dimensional parabolic singularly perturbed semilinear systems of reaction-diffusion type. (English) Zbl 1450.65136 Numer. Algorithms 85, No. 3, 1005-1027 (2020). MSC: 65N06 65N12 65M06 PDF BibTeX XML Cite \textit{C. Clavero} and \textit{J. C. Jorge}, Numer. Algorithms 85, No. 3, 1005--1027 (2020; Zbl 1450.65136) Full Text: DOI OpenURL
Gowrisankar, S.; Natesan, Srinivasan An efficient robust numerical method for singularly perturbed Burgers’ equation. (English) Zbl 1429.65182 Appl. Math. Comput. 346, 385-394 (2019). MSC: 65M06 35B25 35Q53 65M12 PDF BibTeX XML Cite \textit{S. Gowrisankar} and \textit{S. Natesan}, Appl. Math. Comput. 346, 385--394 (2019; Zbl 1429.65182) Full Text: DOI OpenURL
Das, Pratibhamoy; Vigo-Aguiar, Jesus Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter. (English) Zbl 1415.65166 J. Comput. Appl. Math. 354, 533-544 (2019). MSC: 65L10 65M50 PDF BibTeX XML Cite \textit{P. Das} and \textit{J. Vigo-Aguiar}, J. Comput. Appl. Math. 354, 533--544 (2019; Zbl 1415.65166) Full Text: DOI OpenURL
Blatov, I. A.; Dobrobog, N. V.; Kitaeva, E. V. Conditional \(\epsilon\)-uniform boundedness of Galerkin projectors and convergence of an adaptive mesh method as applied to singularly perturbed boundary value problems. (English. Russian original) Zbl 1366.65074 Comput. Math. Math. Phys. 56, No. 7, 1293-1304 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 7, 1323-1334 (2016). Reviewer: Srinivasan Natesan (Assam) MSC: 65L11 65L10 65L60 65L50 34B05 34E15 65L20 PDF BibTeX XML Cite \textit{I. A. Blatov} et al., Comput. Math. Math. Phys. 56, No. 7, 1293--1304 (2016; Zbl 1366.65074); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 7, 1323--1334 (2016) Full Text: DOI OpenURL
Das, Pratibhamoy; Natesan, Srinivasan Optimal error estimate using mesh equidistribution technique for singularly perturbed system of reaction-diffusion boundary-value problems. (English) Zbl 1338.65194 Appl. Math. Comput. 249, 265-277 (2014). MSC: 65L10 65L11 65L12 65L50 35K57 PDF BibTeX XML Cite \textit{P. Das} and \textit{S. Natesan}, Appl. Math. Comput. 249, 265--277 (2014; Zbl 1338.65194) Full Text: DOI OpenURL
Linß, Torsten A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction-diffusion problems. (English) Zbl 1340.65163 Appl. Math., Praha 59, No. 3, 241-256 (2014). Reviewer: Alan L. Andrew (Bundoora) MSC: 65L70 65L11 65L10 65L50 65L60 34B05 PDF BibTeX XML Cite \textit{T. Linß}, Appl. Math., Praha 59, No. 3, 241--256 (2014; Zbl 1340.65163) Full Text: DOI Link OpenURL
MacDonald, Craig S.; Mackenzie, John A.; Ramage, Alison; Newton, Christopher J. P. Robust adaptive computation of a one-dimensional \(\mathbb Q\)-tensor model of nematic liquid crystals. (English) Zbl 1268.76004 Comput. Math. Appl. 64, No. 11, 3627-3640 (2012). MSC: 76A15 76M10 PDF BibTeX XML Cite \textit{C. S. MacDonald} et al., Comput. Math. Appl. 64, No. 11, 3627--3640 (2012; Zbl 1268.76004) Full Text: DOI OpenURL
Linß, Torsten; Radojev, Goran; Zarin, Helena Approximation of singularly perturbed reaction-diffusion problems by quadratic \(C ^1\)-splines. (English) Zbl 1267.65092 Numer. Algorithms 61, No. 1, 35-55 (2012). Reviewer: Thomas Sonar (Braunschweig) MSC: 65L11 65L10 65L70 65L50 34B15 34E15 PDF BibTeX XML Cite \textit{T. Linß} et al., Numer. Algorithms 61, No. 1, 35--55 (2012; Zbl 1267.65092) Full Text: DOI OpenURL