Some new perspectives in best approximation and interpolation of random data. (English) Zbl 1294.62169

Summary: A new notion of universally optimal experimental design is introduced, relevant from the perspective of adaptive nonparametric estimation. It is demonstrated that both discrete and continuous Chebyshev designs are universally optimal in the problem of fitting properly weighted algebraic polynomials to random data. The result is a direct consequence of the well-known relation between Chebyshev’s polynomials and the trigonometric functions.{
}Optimal interpolating designs in rational regression proved particularly elusive in the past. The question can be effectively handled using its connection to elliptic interpolation, in which the ordinary circular sinus, appearing in the classical trigonometric interpolation, is replaced by the Abel-Jacobi elliptic sinus \(\mathrm{sn}(x, k)\) of a modulus \(k\). First, it is demonstrated that – in a natural setting of equidistant design – the elliptic interpolant is never optimal in the so-called normal case \(k \in (-1, 1)\), except for the trigonometric case \(k = 0\).{
}However, the equidistant elliptic interpolation is always optimal in the imaginary case \(k \in i\mathbb R\). Through a relation between elliptic and rational functions, the result leads to a long sought optimal design, for properly weighted rational interpolants. Both the poles and nodes of the interpolants can be conveniently expressed in terms of classical Jacobi’s theta functions.


62K05 Optimal statistical designs
33E05 Elliptic functions and integrals
41A10 Approximation by polynomials
41A20 Approximation by rational functions
62G08 Nonparametric regression and quantile regression
Full Text: DOI


[1] N. H. Abel, ”Recherches sur les Fonctions Elliptiques”, J. für Reine Angevandte Mathematik 2, 101–181 (1827). English translation available in the MAA Digital Library at http://mathdl.maa.org/images/upload library/1/abeltranslation.pdf · ERAM 002.0052cj
[2] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964). · Zbl 0171.38503
[3] N. I. Akhiezer, Elements of the Theory of Elliptic Functions (AMS, Providence, R.I., 1970).
[4] W. Cauer, Synthesis of Linear Communication Networks (McGraw-Hill, New York, 1958). · Zbl 0092.44602
[5] H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1955), Vol. 2. · Zbl 0143.29202
[6] Jaerin Cho, Optimal Design in Regression and Spline Smoothing, PhD Thesis (Queen’s University, Dept. Math. Statist., 2007). · Zbl 1187.62131
[7] J. Cho and B. Levit, ”Cardinal Splines in Nonparametric Regression”, Math. Meth. Statist. 17, 19–34 (2008). · Zbl 1282.62097
[8] J. Cho and B. Levit, ”Asymptotic Optimality of Periodic Spline Interpolation in Nonparametric Regression”, J. Statist. Theory and Practice 2, 465–474 (2008). · Zbl 1211.62063
[9] S. Chowdhury, J. J. Soltis, and W. C. Miller, ”Interpolation Using Elliptic Sine Function: A Digital Signal Processing Approach”, in Proc. 1999 IEEE Canadian Conf. on Electr. and Comp. Eng., Vol. 2, 714–719.
[10] J. L. Doob, Stochastic Processes (Wiley, New York, 1953).
[11] I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes (Springer, New York, 1974), Vol. I. · Zbl 0132.37902
[12] I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic Press, New York, 1994). · Zbl 0918.65002
[13] V. V. Fedorov, Theory of Optimal Experiments (Academic Press, New York, 1972).
[14] I. A. Ibragimov and R. Z. Khasminski, Statistical Estimation: Asymptotic Theory (Springer, New York, 1981).
[15] L. A. Imhof and W. J. Studden, ”E-Optimal Designs for Rational Models”, Ann. Statist. 29, 763–783 (2001). · Zbl 1012.62082
[16] S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics (Interscience, New York, 1966). · Zbl 0153.38902
[17] J. Kiefer and W. J. Studden, ”Optimal Designs for Large Degree Polynomial Regression”, Ann. Statist. 4, 1113–1123 (1976). · Zbl 0357.62051
[18] J. Kiefer and J. Wolfowitz, ”The Equivalence of Two Extremum Problems”, Canad. J. Math. 12, 363–366 (1960). · Zbl 0093.15602
[19] A. N. Kolmogorov and A. P. Yushkevich, eds., Mathematics of the 19th Century: Geometry, Analytic Function Theory (Birkhäuser, Berlin, 1996).
[20] L. D. Landau and E.M. Lifshitz, Mechanics (Pergamon Press, New York, 1976). · Zbl 0081.22207
[21] D. Lee, ”On aMinimal Property of Cardinal and Periodic Lagrange Splines”, J. Approx. Theory 70, 335–338 (1992). · Zbl 0778.41003
[22] O. Lepski and B. Levit, ”Adaptive Minimax Estimation of Infinitely Differentiable Functions”, Math. Meth. Statist. 7, 123–156 (1998). · Zbl 1103.62332
[23] B. Levit, ”Minimax Revisited. I, II”, Math. Meth. Statist. 19, 283–297; 299–326 (2010). · Zbl 1282.62020
[24] D. J. Newman, ”Rational Approximation to |x|”, Michigan Math. J. 11, 11–14 (1964). · Zbl 0138.04402
[25] K. Yu. Osipenko, Optimal Recovery of Analytic Functions (Nova Sci. Publ., New York, 2000).
[26] I. J. Schoenberg, ”On the Maxima of Certain Hankel Determinants and the Zeros of the Classical Orthogonal Polynomials”, Indag. Math. 21, 282–290 (1959). · Zbl 0090.04401
[27] I. J. Schoenberg, Cardinal Spline Interpolation (SIAM, New York, 1973). · Zbl 0264.41003
[28] I. J. Schoenberg and G. Szegö, ”An Extremum Problem for Polynomials”, Compositio Mathematica 14, 260–268 (1960). · Zbl 0097.04902
[29] A. V. Skorokhod, Random Processes with Independent Increments (Kluwer, Dordrecht, 1991).
[30] G. Szegö, Orthogonal Polynomials (AMS, Providence, R.I., 1939).
[31] A. F. Timan, Theory of Approximation of Functions of a Real Variable (Pergamon Press, New York, 1963). · Zbl 0117.29001
[32] E. L. Wachspress, ”Extended Application of Alternating Direction Implicit Iteration Model Problem Theory”, J. SIAM 11, 994–1016 (1963). · Zbl 0244.65045
[33] A. M. Yaglom, An Introduction to the Theory of Stationary Random Functions (Prentice-Hall, Englewood Cliffs, N.J., 1962). · Zbl 0121.12601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.