Besse, Nicolas Lagrangian regularity of the electron magnetohydrodynamics flow on a bounded domain. (English) Zbl 07485561 J. Math. Anal. Appl. 511, No. 2, Article ID 126076, 28 p. (2022). MSC: 35Qxx 35Bxx 35Lxx PDF BibTeX XML Cite \textit{N. Besse}, J. Math. Anal. Appl. 511, No. 2, Article ID 126076, 28 p. (2022; Zbl 07485561) Full Text: DOI OpenURL
Li, Fucai; Zhang, Shuxing; Zhang, Zhipeng Low Mach number limit of the compressible Euler-Cattaneo-Maxwell equations. (English) Zbl 07461634 Z. Angew. Math. Phys. 73, No. 1, Paper No. 26, 20 p. (2022). MSC: 76X05 35L45 35B40 PDF BibTeX XML Cite \textit{F. Li} et al., Z. Angew. Math. Phys. 73, No. 1, Paper No. 26, 20 p. (2022; Zbl 07461634) Full Text: DOI OpenURL
Feng, Yue-Hong; Li, Xin; Mei, Ming; Wang, Shu; Cao, Yang-Chen Convergence to steady-states of compressible Navier-Stokes-Maxwell equations. (English) Zbl 1481.35327 J. Nonlinear Sci. 32, No. 1, Paper No. 2, 32 p. (2022). MSC: 35Q35 76N10 76W05 76X05 35B20 35B40 35A01 35A02 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., J. Nonlinear Sci. 32, No. 1, Paper No. 2, 32 p. (2022; Zbl 1481.35327) Full Text: DOI OpenURL
Li, Yachun; Peng, Yue-Jun; Zhao, Liang Convergence rates in zero-relaxation limits for Euler-Maxwell and Euler-Poisson systems. (English. French summary) Zbl 1480.35331 J. Math. Pures Appl. (9) 154, 185-211 (2021). MSC: 35Q35 35Q60 35B25 35B10 35B65 35K45 35L45 76X05 78A25 82D37 PDF BibTeX XML Cite \textit{Y. Li} et al., J. Math. Pures Appl. (9) 154, 185--211 (2021; Zbl 1480.35331) Full Text: DOI OpenURL
Feng, Yue-Hong; Li, Xin; Wang, Shu The global convergence of non-isentropic Euler-Maxwell equations via infinity-ion-mass limit. (English) Zbl 1464.35221 Z. Angew. Math. Phys. 72, No. 1, Paper No. 28, 28 p. (2021). MSC: 35Q35 35Q60 76X05 35B65 35C20 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Z. Angew. Math. Phys. 72, No. 1, Paper No. 28, 28 p. (2021; Zbl 1464.35221) Full Text: DOI OpenURL
Aregba-Driollet, Denise; Brull, Stéphane; Peng, Yue-Jun Global existence of smooth solutions for a nonconservative bitemperature Euler model. (English) Zbl 1464.35195 SIAM J. Math. Anal. 53, No. 2, 1886-1907 (2021). MSC: 35Q31 35L60 35F55 76N10 76W05 82D75 PDF BibTeX XML Cite \textit{D. Aregba-Driollet} et al., SIAM J. Math. Anal. 53, No. 2, 1886--1907 (2021; Zbl 1464.35195) Full Text: DOI OpenURL
Binshati, Ismahan; Hattori, Harumi Global existence and asymptotic behavior of solutions for compressible two-fluid Euler-Maxwell equation. (English) Zbl 1468.35129 Int. J. Differ. Equ. 2020, Article ID 4363296, 27 p. (2020). MSC: 35Q35 35Q60 76N10 76T06 42A38 35B40 35A01 PDF BibTeX XML Cite \textit{I. Binshati} and \textit{H. Hattori}, Int. J. Differ. Equ. 2020, Article ID 4363296, 27 p. (2020; Zbl 1468.35129) Full Text: DOI OpenURL
Jiang, Peng Global existence and large time behavior of classical solutions to the Euler-Maxwell-Vlasov-Fokker-Planck system. (English) Zbl 1435.35384 J. Differ. Equations 268, No. 12, 7715-7740 (2020). MSC: 35Q83 35Q84 35Q31 35Q61 35A01 41A25 76W05 35B40 35A09 76N10 76T99 PDF BibTeX XML Cite \textit{P. Jiang}, J. Differ. Equations 268, No. 12, 7715--7740 (2020; Zbl 1435.35384) Full Text: DOI OpenURL
Mahmood, Tariq The zero-energy limit and quasi-neutral limit of scaled Euler-Maxwell system and its corresponding limiting models. (English) Zbl 1484.76094 AIMS Math. 4, No. 3, 910-927 (2019). MSC: 76X05 35Q35 35Q60 82D10 PDF BibTeX XML Cite \textit{T. Mahmood}, AIMS Math. 4, No. 3, 910--927 (2019; Zbl 1484.76094) Full Text: DOI OpenURL
Yang, Yong-Fu; Hu, Hui-Fang Uniform global convergence of non-isentropic Euler-Maxwell systems with dissipation. (English) Zbl 1412.35270 Nonlinear Anal., Real World Appl. 47, 332-347 (2019). MSC: 35Q35 76W05 35B65 35Q31 35Q60 78A25 PDF BibTeX XML Cite \textit{Y.-F. Yang} and \textit{H.-F. Hu}, Nonlinear Anal., Real World Appl. 47, 332--347 (2019; Zbl 1412.35270) Full Text: DOI OpenURL
Feng, Yue-Hong; Li, Xin; Wang, Shu Stability of non-constant equilibrium solutions for two-fluid non-isentropic Euler-Maxwell systems arising in plasmas. (English) Zbl 1394.76159 J. Math. Phys. 59, No. 7, 073105, 20 p. (2018). MSC: 76X05 76T15 35L45 35L65 93D20 35Q60 35Q35 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., J. Math. Phys. 59, No. 7, 073105, 20 p. (2018; Zbl 1394.76159) Full Text: DOI arXiv OpenURL
Liu, Cunming; Peng, Yue-Jun Stability of periodic steady-state solutions to a non-isentropic Euler-Maxwell system. (English) Zbl 1386.35024 Z. Angew. Math. Phys. 68, No. 5, Paper No. 105, 17 p. (2017). MSC: 35B40 35Q60 35Q35 PDF BibTeX XML Cite \textit{C. Liu} and \textit{Y.-J. Peng}, Z. Angew. Math. Phys. 68, No. 5, Paper No. 105, 17 p. (2017; Zbl 1386.35024) Full Text: DOI OpenURL
Peng, Yue-Jun; Wasiolek, Victor Global quasi-neutral limit of Euler-Maxwell systems with velocity dissipation. (English) Zbl 1366.35122 J. Math. Anal. Appl. 451, No. 1, 146-174 (2017). MSC: 35Q31 35Q60 35B65 76W05 76X05 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{V. Wasiolek}, J. Math. Anal. Appl. 451, No. 1, 146--174 (2017; Zbl 1366.35122) Full Text: DOI OpenURL
Xu, Jiang; Kawashima, Shuichi The frequency-localization technique and minimal decay-regularity for Euler-Maxwell equations. (English) Zbl 1356.35250 J. Math. Anal. Appl. 446, No. 2, 1537-1554 (2017). MSC: 35Q82 82D10 35Q60 76X05 78A25 35B65 PDF BibTeX XML Cite \textit{J. Xu} and \textit{S. Kawashima}, J. Math. Anal. Appl. 446, No. 2, 1537--1554 (2017; Zbl 1356.35250) Full Text: DOI arXiv OpenURL
Li, Xin; Wang, Shu; Feng, Yue-Hong Stability of non-constant steady-state solutions for bipolar non-isentropic Euler-Maxwell equations with damping terms. (English) Zbl 1362.35039 Z. Angew. Math. Phys. 67, No. 5, Article ID 133, 27 p. (2016). MSC: 35B35 35L45 35L60 35L65 35Q60 76X05 82D10 PDF BibTeX XML Cite \textit{X. Li} et al., Z. Angew. Math. Phys. 67, No. 5, Article ID 133, 27 p. (2016; Zbl 1362.35039) Full Text: DOI OpenURL
Xu, Jiang; Kawashima, Shuichi The minimal decay regularity of smooth solutions to the Euler-Maxwell two-fluid system. (English) Zbl 1359.35160 J. Hyperbolic Differ. Equ. 13, No. 4, 719-733 (2016). MSC: 35Q35 35B40 35L45 82D10 76X05 35B65 76N10 78A25 35Q61 PDF BibTeX XML Cite \textit{J. Xu} and \textit{S. Kawashima}, J. Hyperbolic Differ. Equ. 13, No. 4, 719--733 (2016; Zbl 1359.35160) Full Text: DOI OpenURL
Ueda, Yoshihiro; Kawashima, Shuichi Stability of stationary solutions for the non-isentropic Euler-Maxwell system in the whole space. (English) Zbl 1356.35042 Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 787-797 (2016). MSC: 35B35 35B40 35L40 35Q31 35B45 35Q61 PDF BibTeX XML Cite \textit{Y. Ueda} and \textit{S. Kawashima}, Bull. Braz. Math. Soc. (N.S.) 47, No. 2, 787--797 (2016; Zbl 1356.35042) Full Text: DOI OpenURL
Pu, Xueke Quasineutral limit of the Euler-Poisson system under strong magnetic fields. (English) Zbl 1356.35185 Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 2095-2111 (2016). MSC: 35Q35 76X05 PDF BibTeX XML Cite \textit{X. Pu}, Discrete Contin. Dyn. Syst., Ser. S 9, No. 6, 2095--2111 (2016; Zbl 1356.35185) Full Text: DOI OpenURL
Wasiolek, Victor Uniform global existence and convergence of Euler-Maxwell systems with small parameters. (English) Zbl 1353.35198 Commun. Pure Appl. Anal. 15, No. 6, 2007-2021 (2016). MSC: 35L60 35B40 35Q31 35Q61 PDF BibTeX XML Cite \textit{V. Wasiolek}, Commun. Pure Appl. Anal. 15, No. 6, 2007--2021 (2016; Zbl 1353.35198) Full Text: DOI OpenURL
Peng, Yue-Jun; Wasiolek, Victor Parabolic limit with differential constraints of first-order quasilinear hyperbolic systems. (English) Zbl 1347.35023 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 4, 1103-1130 (2016). MSC: 35B25 35C20 35L60 76M45 35L45 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{V. Wasiolek}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 33, No. 4, 1103--1130 (2016; Zbl 1347.35023) Full Text: DOI OpenURL
Feng, Yue-Hong; Wang, Shu; Li, Xin Stability of non-constant steady-state solutions for non-isentropic Euler-Maxwell system with a temperature damping term. (English) Zbl 1348.35134 Math. Methods Appl. Sci. 39, No. 10, 2514-2528 (2016). Reviewer: Ilya A. Chernov (Petrozavodsk) MSC: 35L45 35L60 82D10 35Q31 35Q61 35B35 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Math. Methods Appl. Sci. 39, No. 10, 2514--2528 (2016; Zbl 1348.35134) Full Text: DOI OpenURL
Peng, Yue-Jun; Wasiolek, Victor Uniform global existence and parabolic limit for partially dissipative hyperbolic systems. (English) Zbl 1343.35015 J. Differ. Equations 260, No. 9, 7059-7092 (2016). MSC: 35B25 35K45 35L45 35L60 PDF BibTeX XML Cite \textit{Y.-J. Peng} and \textit{V. Wasiolek}, J. Differ. Equations 260, No. 9, 7059--7092 (2016; Zbl 1343.35015) Full Text: DOI OpenURL
Wu, Fuzhou Initial layer and relaxation limit of non-isentropic compressible Euler equations with damping. (English) Zbl 1333.35172 J. Differ. Equations 260, No. 6, 5103-5127 (2016). MSC: 35Q31 76N15 PDF BibTeX XML Cite \textit{F. Wu}, J. Differ. Equations 260, No. 6, 5103--5127 (2016; Zbl 1333.35172) Full Text: DOI arXiv OpenURL
Feng, Yue-Hong; Peng, Yue-Jun; Wang, Shu Stability of non-constant equilibrium solutions for two-fluid Euler-Maxwell systems. (English) Zbl 1330.35038 Nonlinear Anal., Real World Appl. 26, 372-390 (2015). MSC: 35B40 35B35 35Q31 35Q61 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Nonlinear Anal., Real World Appl. 26, 372--390 (2015; Zbl 1330.35038) Full Text: DOI OpenURL
Duan, Renjun; Liu, Qingqin; Zhu, Changjiang Darcy’s law and diffusion for a two-fluid Euler-Maxwell system with dissipation. (English) Zbl 1330.35318 Math. Models Methods Appl. Sci. 25, No. 11, Article ID 2089, 2089-2151 (2015). MSC: 35Q35 35B40 35P20 76S05 35Q60 76K05 PDF BibTeX XML Cite \textit{R. Duan} et al., Math. Models Methods Appl. Sci. 25, No. 11, Article ID 2089, 2089--2151 (2015; Zbl 1330.35318) Full Text: DOI arXiv OpenURL
Xu, Jiang; Mori, Naofumi; Kawashima, Shuichi \(L^p - L^q - L^r\) estimates and minimal decay regularity for compressible Euler-Maxwell equations. (English. French summary) Zbl 1330.35052 J. Math. Pures Appl. (9) 104, No. 5, 965-981 (2015). Reviewer: Michael Reissig (Freiberg) MSC: 35B45 35B35 35L40 35B40 82D10 35Q31 35Q61 35A09 PDF BibTeX XML Cite \textit{J. Xu} et al., J. Math. Pures Appl. (9) 104, No. 5, 965--981 (2015; Zbl 1330.35052) Full Text: DOI arXiv OpenURL
Peng, Yue-Jun Stability of non-constant equilibrium solutions for Euler-Maxwell equations. (English. French summary) Zbl 1304.35104 J. Math. Pures Appl. (9) 103, No. 1, 39-67 (2015). MSC: 35B40 35L60 35Q60 35Q31 35L50 35Q61 PDF BibTeX XML Cite \textit{Y.-J. Peng}, J. Math. Pures Appl. (9) 103, No. 1, 39--67 (2015; Zbl 1304.35104) Full Text: DOI OpenURL
Wang, Shu; Feng, Yue-Hong; Li, Xin The asymptotic behavior of globally smooth solutions of non-isentropic Euler-Maxwell equations for plasmas. (English) Zbl 1410.82029 Appl. Math. Comput. 231, 299-306 (2014). MSC: 82D10 35Q31 PDF BibTeX XML Cite \textit{S. Wang} et al., Appl. Math. Comput. 231, 299--306 (2014; Zbl 1410.82029) Full Text: DOI OpenURL
Feng, Yue-Hong; Wang, Shu; Kawashima, Shuichi Global existence and asymptotic decay of solutions to the non-isentropic Euler-Maxwell system. (English) Zbl 1304.35517 Math. Models Methods Appl. Sci. 24, No. 14, 2851 (2014). MSC: 35Q31 35A01 35L45 35L60 35Q35 35B65 35Q61 35B40 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Math. Models Methods Appl. Sci. 24, No. 14, 2851 (2014; Zbl 1304.35517) Full Text: DOI arXiv OpenURL
Tan, Zhong; Wang, Yanjin; Wang, Yong Decay estimates of solutions to the compressible Euler-Maxwell system in \(\mathbb{R}^3\). (English) Zbl 1296.83018 J. Differ. Equations 257, No. 8, 2846-2873 (2014). MSC: 83C22 82D37 76N10 35Q35 35B40 83C15 83C05 85A30 PDF BibTeX XML Cite \textit{Z. Tan} et al., J. Differ. Equations 257, No. 8, 2846--2873 (2014; Zbl 1296.83018) Full Text: DOI arXiv OpenURL
Feng, Yue-Hong; Peng, Yue-Jun; Wang, Shu Asymptotic behavior of global smooth solutions for full compressible Navier-Stokes-Maxwell equations. (English) Zbl 1297.35034 Nonlinear Anal., Real World Appl. 19, 105-116 (2014). MSC: 35B40 35Q30 35Q61 35B45 PDF BibTeX XML Cite \textit{Y.-H. Feng} et al., Nonlinear Anal., Real World Appl. 19, 105--116 (2014; Zbl 1297.35034) Full Text: DOI OpenURL
Tan, Zhong; Wang, Yong Large-time behavior of solutions to the compressible non-isentropic Euler-Maxwell system in \(\mathbb R^3\). (English) Zbl 1295.35106 Nonlinear Anal., Real World Appl. 15, 187-204 (2014). MSC: 35B40 35Q31 35Q61 PDF BibTeX XML Cite \textit{Z. Tan} and \textit{Y. Wang}, Nonlinear Anal., Real World Appl. 15, 187--204 (2014; Zbl 1295.35106) Full Text: DOI arXiv OpenURL
Xu, Jiang; Xiong, Jun Global existence of classical solutions of full Euler-Maxwell equations. (English) Zbl 1307.35291 J. Math. Anal. Appl. 402, No. 2, 545-557 (2013). MSC: 35Q60 76X05 82D10 35A09 35B40 PDF BibTeX XML Cite \textit{J. Xu} and \textit{J. Xiong}, J. Math. Anal. Appl. 402, No. 2, 545--557 (2013; Zbl 1307.35291) Full Text: DOI OpenURL
Peng, Yue-Jun Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations. (English) Zbl 1251.35159 Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29, No. 5, 737-759 (2012). MSC: 35Q60 35Q31 35Q05 35L45 35B40 PDF BibTeX XML Cite \textit{Y.-J. Peng}, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 29, No. 5, 737--759 (2012; Zbl 1251.35159) Full Text: DOI OpenURL
Hajjej, Mohamed-Lasmer; Peng, Yue-Jun Initial layers and zero-relaxation limits of Euler-Maxwell equations. (English) Zbl 1233.35184 J. Differ. Equations 252, No. 2, 1441-1465 (2012). MSC: 35Q61 35B30 35B10 35B65 PDF BibTeX XML Cite \textit{M.-L. Hajjej} and \textit{Y.-J. Peng}, J. Differ. Equations 252, No. 2, 1441--1465 (2012; Zbl 1233.35184) Full Text: DOI OpenURL