Porwal, Kamana; Wadhawan, Tanvi Unified analysis of discontinuous Galerkin methods for frictional contact problem with normal compliance. (English) Zbl 07715687 J. Comput. Appl. Math. 434, Article ID 115350, 25 p. (2023). MSC: 65Nxx 74Sxx 74Mxx PDF BibTeX XML Cite \textit{K. Porwal} and \textit{T. Wadhawan}, J. Comput. Appl. Math. 434, Article ID 115350, 25 p. (2023; Zbl 07715687) Full Text: DOI arXiv
Khandelwal, Rohit; Porwal, Kamana; Wadhawan, Tanvi Adaptive quadratic finite element method for the unilateral contact problem. (English) Zbl 07708321 J. Sci. Comput. 96, No. 1, Paper No. 20, 30 p. (2023). MSC: 65Nxx 35Jxx 74Sxx PDF BibTeX XML Cite \textit{R. Khandelwal} et al., J. Sci. Comput. 96, No. 1, Paper No. 20, 30 p. (2023; Zbl 07708321) Full Text: DOI arXiv
Qiu, Jiali; Zhao, Jikun; Wang, Fei Nonconforming virtual element methods for the fourth-order variational inequalities of the first kind. (English) Zbl 1514.65178 J. Comput. Appl. Math. 425, Article ID 115025, 20 p. (2023). MSC: 65N30 49J40 PDF BibTeX XML Cite \textit{J. Qiu} et al., J. Comput. Appl. Math. 425, Article ID 115025, 20 p. (2023; Zbl 1514.65178) Full Text: DOI
Wang, Fei; Shah, Sheheryar; Wu, Bangmin Discontinuous Galerkin methods for hemivariational inequalities in contact mechanics. (English) Zbl 1516.65140 J. Sci. Comput. 95, No. 3, Paper No. 87, 17 p. (2023). MSC: 65N30 49J40 65N12 65N15 74M15 74M10 74S05 35Q74 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Sci. Comput. 95, No. 3, Paper No. 87, 17 p. (2023; Zbl 1516.65140) Full Text: DOI
Wei, Huayi; Deng, Yanling; Wang, Fei Gradient recovery type a posteriori error estimates of virtual element method for an elliptic variational inequality of the second kind. (English) Zbl 07698302 Nonlinear Anal., Real World Appl. 73, Article ID 103903, 12 p. (2023). MSC: 65Nxx 74Mxx 74Sxx PDF BibTeX XML Cite \textit{H. Wei} et al., Nonlinear Anal., Real World Appl. 73, Article ID 103903, 12 p. (2023; Zbl 07698302) Full Text: DOI
Khandelwal, Rohit; Porwal, Kamana Pointwise a posteriori error control of discontinuous Galerkin methods for unilateral contact problems. (English) Zbl 1512.65270 Comput. Methods Appl. Math. 23, No. 1, 189-217 (2023). MSC: 65N30 65N15 PDF BibTeX XML Cite \textit{R. Khandelwal} and \textit{K. Porwal}, Comput. Methods Appl. Math. 23, No. 1, 189--217 (2023; Zbl 1512.65270) Full Text: DOI
Khandelwal, Rohit; Porwal, Kamana; Singla, Ritesh Supremum-norm a posteriori error control of quadratic discontinuous Galerkin methods for the obstacle problem. (English) Zbl 07674331 Comput. Math. Appl. 137, 147-171 (2023). MSC: 65-XX 74-XX PDF BibTeX XML Cite \textit{R. Khandelwal} et al., Comput. Math. Appl. 137, 147--171 (2023; Zbl 07674331) Full Text: DOI arXiv
Wang, Fei; Reddy, B. Daya A priori error analysis of virtual element method for contact problem. (English) Zbl 07525639 Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 10, 12 p. (2022). MSC: 65N30 49J40 PDF BibTeX XML Cite \textit{F. Wang} and \textit{B. D. Reddy}, Fixed Point Theory Algorithms Sci. Eng. 2022, Paper No. 10, 12 p. (2022; Zbl 07525639) Full Text: DOI
Qian, Yanxia; Wang, Fei; Zhang, Yongchao; Han, Weimin A mixed discontinuous Galerkin method for an unsteady incompressible Darcy equation. (English) Zbl 1487.65156 Appl. Anal. 101, No. 4, 1176-1198 (2022). MSC: 65M60 65M06 65N30 65M15 76S05 49J40 35Q35 PDF BibTeX XML Cite \textit{Y. Qian} et al., Appl. Anal. 101, No. 4, 1176--1198 (2022; Zbl 1487.65156) Full Text: DOI
He, Limin; Han, Weimin; Wang, Fei On a family of discontinuous Galerkin fully-discrete schemes for the wave equation. (English) Zbl 1476.65301 Comput. Appl. Math. 40, No. 2, Paper No. 56, 24 p. (2021). MSC: 65N30 49J40 PDF BibTeX XML Cite \textit{L. He} et al., Comput. Appl. Math. 40, No. 2, Paper No. 56, 24 p. (2021; Zbl 1476.65301) Full Text: DOI
Wang, Fei; Shah, Sheheryar; Xiao, Wenqiang A priori error estimates of discontinuous Galerkin methods for a quasi-variational inequality. (English) Zbl 1480.65347 BIT 61, No. 3, 1005-1022 (2021). MSC: 65N30 65N15 49J40 74M10 74M15 74S05 35Q74 PDF BibTeX XML Cite \textit{F. Wang} et al., BIT 61, No. 3, 1005--1022 (2021; Zbl 1480.65347) Full Text: DOI
He, Limin; Han, Weimin; Wang, Fei; Cai, Wentao Unconditional stability and optimal error estimates of discontinuous Galerkin methods for the second-order wave equation. (English) Zbl 1468.65143 Appl. Anal. 100, No. 6, 1143-1157 (2021). MSC: 65M60 65M06 65N30 65M12 65M15 35L05 PDF BibTeX XML Cite \textit{L. He} et al., Appl. Anal. 100, No. 6, 1143--1157 (2021; Zbl 1468.65143) Full Text: DOI
Chouly, Franz; Ern, Alexandre; Pignet, Nicolas A hybrid high-order discretization combined with Nitsche’s method for contact and Tresca friction in small strain elasticity. (English) Zbl 1452.65328 SIAM J. Sci. Comput. 42, No. 4, A2300-A2324 (2020). Reviewer: Marius Ghergu (Dublin) MSC: 65N30 65N12 74M15 74B10 PDF BibTeX XML Cite \textit{F. Chouly} et al., SIAM J. Sci. Comput. 42, No. 4, A2300--A2324 (2020; Zbl 1452.65328) Full Text: DOI
Wu, Jia; Zhang, Shougui Boundary element and augmented Lagrangian methods for contact problem with Coulomb friction. (English) Zbl 1459.74135 Math. Probl. Eng. 2020, Article ID 7490736, 10 p. (2020). MSC: 74M10 65N38 74S15 PDF BibTeX XML Cite \textit{J. Wu} and \textit{S. Zhang}, Math. Probl. Eng. 2020, Article ID 7490736, 10 p. (2020; Zbl 1459.74135) Full Text: DOI
Wang, Fei; Ling, Min; Han, Weimin; Jing, Feifei Adaptive discontinuous Galerkin methods for solving an incompressible Stokes flow problem with slip boundary condition of frictional type. (English) Zbl 1434.65278 J. Comput. Appl. Math. 371, Article ID 112700, 21 p. (2020). MSC: 65N30 49J40 65N15 76M10 76D07 76D10 PDF BibTeX XML Cite \textit{F. Wang} et al., J. Comput. Appl. Math. 371, Article ID 112700, 21 p. (2020; Zbl 1434.65278) Full Text: DOI
Li, Xiaolin; Dong, Haiyun Analysis of the element-free Galerkin method for Signorini problems. (English) Zbl 1428.74210 Appl. Math. Comput. 346, 41-56 (2019). MSC: 74S05 65N30 65N12 74M15 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Dong}, Appl. Math. Comput. 346, 41--56 (2019; Zbl 1428.74210) Full Text: DOI
Han, Weimin; Sofonea, Mircea Numerical analysis of hemivariational inequalities in contact mechanics. (English) Zbl 1433.65296 Acta Numerica 28, 175-286 (2019). MSC: 65N30 35Q74 74F15 74S05 65M60 65M06 65M12 65M15 35A01 35A02 74D10 PDF BibTeX XML Cite \textit{W. Han} and \textit{M. Sofonea}, Acta Numerica 28, 175--286 (2019; Zbl 1433.65296) Full Text: DOI
Han, Weimin; He, Limin; Wang, Fei Optimal order error estimates for discontinuous Galerkin methods for the wave equation. (English) Zbl 1412.65213 J. Sci. Comput. 78, No. 1, 121-144 (2019). MSC: 65N30 49J40 65N15 65M06 PDF BibTeX XML Cite \textit{W. Han} et al., J. Sci. Comput. 78, No. 1, 121--144 (2019; Zbl 1412.65213) Full Text: DOI
Walloth, Mirjam A reliable, efficient and localized error estimator for a discontinuous Galerkin method for the Signorini problem. (English) Zbl 1406.65120 Appl. Numer. Math. 135, 276-296 (2019). MSC: 65N30 65N15 74M15 74B10 35Q74 PDF BibTeX XML Cite \textit{M. Walloth}, Appl. Numer. Math. 135, 276--296 (2019; Zbl 1406.65120) Full Text: DOI
Xu, Qinwu; Xu, Yufeng Extremely low order time-fractional differential equation and application in combustion process. (English) Zbl 07265265 Commun. Nonlinear Sci. Numer. Simul. 64, 135-148 (2018). MSC: 35Rxx 35B44 80A25 65M06 PDF BibTeX XML Cite \textit{Q. Xu} and \textit{Y. Xu}, Commun. Nonlinear Sci. Numer. Simul. 64, 135--148 (2018; Zbl 07265265) Full Text: DOI
Wang, Fei; Eichholz, Joseph; Han, Weimin A two level algorithm for an obstacle problem. (English) Zbl 1427.65381 Appl. Math. Comput. 330, 65-76 (2018). MSC: 65N30 49J40 65K15 65N12 65N15 PDF BibTeX XML Cite \textit{F. Wang} et al., Appl. Math. Comput. 330, 65--76 (2018; Zbl 1427.65381) Full Text: DOI
Xiao, Wenqiang; Wang, Fei; Han, Weimin Discontinuous Galerkin methods for solving a frictional contact problem with normal compliance. (English) Zbl 1407.65305 Numer. Funct. Anal. Optim. 39, No. 12, 1248-1264 (2018). MSC: 65N30 49J40 74M10 74M15 35Q74 PDF BibTeX XML Cite \textit{W. Xiao} et al., Numer. Funct. Anal. Optim. 39, No. 12, 1248--1264 (2018; Zbl 1407.65305) Full Text: DOI
Wang, Fei; Wei, Huayi Virtual element method for simplified friction problem. (English) Zbl 06971567 Appl. Math. Lett. 85, 125-131 (2018). MSC: 65N30 74S05 65N12 65N15 65K15 PDF BibTeX XML Cite \textit{F. Wang} and \textit{H. Wei}, Appl. Math. Lett. 85, 125--131 (2018; Zbl 06971567) Full Text: DOI
Jing, Feifei; Han, Weimin; Yan, Wenjing; Wang, Fei Discontinuous Galerkin methods for a stationary Navier-Stokes problem with a nonlinear slip boundary condition of friction type. (English) Zbl 1397.65272 J. Sci. Comput. 76, No. 2, 888-912 (2018). MSC: 65N30 76D05 65N15 35A23 65N12 35Q30 PDF BibTeX XML Cite \textit{F. Jing} et al., J. Sci. Comput. 76, No. 2, 888--912 (2018; Zbl 1397.65272) Full Text: DOI
Porwal, Kamana Discontinuous Galerkin methods for a contact problem with Tresca friction arising in linear elasticity. (English) Zbl 1381.74207 Appl. Numer. Math. 112, 182-202 (2017). MSC: 74S05 65N30 65K15 65N15 74B05 35Q74 PDF BibTeX XML Cite \textit{K. Porwal}, Appl. Numer. Math. 112, 182--202 (2017; Zbl 1381.74207) Full Text: DOI
Gudi, Thirupathi; Porwal, Kamana A \(C^0\) interior penalty method for a fourth-order variational inequality of the second kind. (English) Zbl 1339.65088 Numer. Methods Partial Differ. Equations 32, No. 1, 36-59 (2016). Reviewer: Bülent Karasözen (Ankara) MSC: 65K15 49J40 74M10 74M15 49M25 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{K. Porwal}, Numer. Methods Partial Differ. Equations 32, No. 1, 36--59 (2016; Zbl 1339.65088) Full Text: DOI
Zhang, Shougui; Li, Xiaolin Boundary augmented Lagrangian method for the Signorini problem. (English) Zbl 1389.35164 Appl. Math., Praha 61, No. 2, 215-231 (2016). Reviewer: Andreas Kleefeld (Jülich) MSC: 35J58 35J05 65N38 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Li}, Appl. Math., Praha 61, No. 2, 215--231 (2016; Zbl 1389.35164) Full Text: DOI Link
Zhang, Shougui; Li, Xiaolin An augmented Lagrangian method for the Signorini boundary value problem with BEM. (English) Zbl 1349.35137 Bound. Value Probl. 2016, Paper No. 62, 14 p. (2016). MSC: 35J86 47H10 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Li}, Bound. Value Probl. 2016, Paper No. 62, 14 p. (2016; Zbl 1349.35137) Full Text: DOI
Gudi, Thirupathi; Porwal, Kamana A posteriori error estimates of discontinuous Galerkin methods for the Signorini problem. (English) Zbl 1327.65239 J. Comput. Appl. Math. 292, 257-278 (2016). MSC: 65N30 65N15 65N12 PDF BibTeX XML Cite \textit{T. Gudi} and \textit{K. Porwal}, J. Comput. Appl. Math. 292, 257--278 (2016; Zbl 1327.65239) Full Text: DOI
Zeng, Yuping; Chen, Jinru; Wang, Feng Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities. (English) Zbl 1443.65088 Comput. Math. Appl. 69, No. 8, 760-770 (2015). MSC: 65K15 49J40 PDF BibTeX XML Cite \textit{Y. Zeng} et al., Comput. Math. Appl. 69, No. 8, 760--770 (2015; Zbl 1443.65088) Full Text: DOI
Zhang, Shougui; Li, Xiaolin Boundary augmented Lagrangian method for contact problems in linear elasticity. (English) Zbl 1403.74065 Eng. Anal. Bound. Elem. 61, 127-133 (2015). MSC: 74M15 65N38 74B05 PDF BibTeX XML Cite \textit{S. Zhang} and \textit{X. Li}, Eng. Anal. Bound. Elem. 61, 127--133 (2015; Zbl 1403.74065) Full Text: DOI
Wang, Fei; Han, Weimin; Eichholz, Joseph; Cheng, Xiaoliang A posteriori error estimates for discontinuous Galerkin methods of obstacle problems. (English) Zbl 1304.65163 Nonlinear Anal., Real World Appl. 22, 664-679 (2015). MSC: 65K15 49J40 49M25 PDF BibTeX XML Cite \textit{F. Wang} et al., Nonlinear Anal., Real World Appl. 22, 664--679 (2015; Zbl 1304.65163) Full Text: DOI
Bartosz, Krzysztof; Cheng, Xiaoliang; Kalita, Piotr; Yu, Yuanjie; Zheng, Cong Rothe method for parabolic variational-hemivariational inequalities. (English) Zbl 1303.65053 J. Math. Anal. Appl. 423, No. 2, 841-862 (2015). MSC: 65K15 49J40 49M25 PDF BibTeX XML Cite \textit{K. Bartosz} et al., J. Math. Anal. Appl. 423, No. 2, 841--862 (2015; Zbl 1303.65053) Full Text: DOI
Wang, Fei; Han, Weimin; Cheng, Xiaoliang Discontinuous Galerkin methods for solving a quasistatic contact problem. (English) Zbl 1431.74106 Numer. Math. 126, No. 4, 771-800 (2014). MSC: 74S05 74S20 74M15 65M15 PDF BibTeX XML Cite \textit{F. Wang} et al., Numer. Math. 126, No. 4, 771--800 (2014; Zbl 1431.74106) Full Text: DOI
Wang, Fei Discontinuous Galerkin methods for solving two membranes problem. (English) Zbl 1416.65466 Numer. Funct. Anal. Optim. 34, No. 2, 220-235 (2013). MSC: 65N30 65K15 49J40 65N15 PDF BibTeX XML Cite \textit{F. Wang}, Numer. Funct. Anal. Optim. 34, No. 2, 220--235 (2013; Zbl 1416.65466) Full Text: DOI