×

On the apparent permeability of porous media in rarefied gas flows. (English) Zbl 1383.76459

Summary: The apparent gas permeability of a porous medium is an important parameter in the prediction of unconventional gas production, which was first investigated systematically by Klinkenberg in 1941 and found to increase with the reciprocal mean gas pressure (or equivalently, the Knudsen number). Although the underlying rarefaction effects are well known, the reason that the correction factor in Klinkenberg’s famous equation decreases when the Knudsen number increases has not been fully understood. Most of the studies idealize the porous medium as a bundle of straight cylindrical tubes; however, according to the gas kinetic theory, this only results in an increase of the correction factor with the Knudsen number, which clearly contradicts Klinkenberg’s experimental observations. Here, by solving the Bhatnagar-Gross-Krook equation in simplified (but not simple) porous media, we identify, for the first time, two key factors that can explain Klinkenberg’s experimental results: the tortuous flow path and the non-unitary tangential momentum accommodation coefficient for the gas-surface interaction. Moreover, we find that Klinkenberg’s results can only be observed when the ratio between the apparent and intrinsic permeabilities is \({\lesssim}30\); at large ratios (or Knudsen numbers) the correction factor increases with the Knudsen number. Our numerical results could also serve as benchmarking cases to assess the accuracy of macroscopic models and/or numerical schemes for the modelling/simulation of rarefied gas flows in complex geometries over a wide range of gas rarefaction. Specifically, we point out that the Navier-Stokes equations with the first-order velocity-slip boundary condition are often misused to predict the apparent gas permeability of the porous medium; that is, any nonlinear dependence of the apparent gas permeability with the Knudsen number, predicted from the Navier-Stokes equations, is not reliable. Worse still, for some types of gas-surface interactions, even the ‘filtered’ linear dependence of the apparent gas permeability with the Knudsen number is of no practical use since, compared to the numerical solution of the Bhatnagar-Gross-Krook equation, it is only accurate when the ratio between the apparent and intrinsic permeabilities is \({\lesssim}1.5\).

MSC:

76S05 Flows in porous media; filtration; seepage
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aoki, K.; Sone, Y.; Yamada, T., Numerical analysis of gas flows condensing on its plane condensed phase on the basis of kinetic theory, Phys. Fluids, 2, 1867-1878, (1990) · Zbl 0721.76085 · doi:10.1063/1.857661
[2] Beskok, A.; Karniadakis, G. E., A model for flows in channels, pipes, and ducts at micro and nano scales, Microscale Therm. Engng, 3, 43-77, (1999) · doi:10.1080/108939599199864
[3] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525, (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[4] Borner, A.; Panerai, F.; Mansour, N. N., High temperature permeability of fibrous materials using direct simulation Monte Carlo, Intl J. Heat Mass Transfer, 106, 1318-1326, (2017) · doi:10.1016/j.ijheatmasstransfer.2016.10.113
[5] Chai, Z.; Lu, J.; Shi, B.; Guo, Z., Gas slippage effect on the permeability of circular cylinders in a square array, Intl J. Heat Mass Transfer, 54, 3009-3014, (2011) · Zbl 1419.76605 · doi:10.1016/j.ijheatmasstransfer.2011.02.049
[6] Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-uniform Gases, (1970), Cambridge University Press · JFM 65.1541.01
[7] Chu, C. K., Kinetic-theoretic description of the formation of a shock wave, Phys. Fluids, 8, 12, (1965) · doi:10.1063/1.1761077
[8] Civan, F., Effective correlation of apparent gas permeability in tight porous media, Transp. Porous. Med., 82, 375-384, (2010) · doi:10.1007/s11242-009-9432-z
[9] Darabi, H.; Ettehad, A.; Javadpour, F.; Sepehrnoori, K., Gas flow in ultra-tight shale strata, J. Fluid Mech., 710, 641-658, (2012) · Zbl 1275.76196 · doi:10.1017/jfm.2012.424
[10] Garcia-Colin, L. S.; Velasco, R. M.; Uribe, F. J., Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465, 149-189, (2008) · doi:10.1016/j.physrep.2008.04.010
[11] Gibelli, L., A second-order slip model for arbitrary accomodation at the wall, 3rd Micro and Nano Flows, (2011), Brunel University
[12] Grad, H., On the kinetic theory of rarefied gases, Comm. Pure Appl. Maths, 2, 331-407, (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[13] Gu, X. J.; Emerson, D. R., A high-order moment approach for capturing non-equilibrium phenomena in the transition regime, J. Fluid Mech., 636, 177-216, (2009) · Zbl 1183.76850 · doi:10.1017/S002211200900768X
[14] Gu, X. J.; Emerson, D. R.; Tang, G. H., Analysis of the slip coefficient and defect velocity in the Knudsen layer of a rarefied gas using the linearized moment equations, Phys. Rev. E, 81, (2010)
[15] Hadjiconstantinou, N. G., Comment on Cercignani’s second-order slip coefficient, Phys. Fluids, 15, 2352-2354, (2003) · doi:10.1063/1.1587155
[16] Huang, J. C.; Xu, K.; Yu, P. B., A unified gas-kinetic scheme for continuum and rarefied flows III: microflow simulations, Commun. Comput. Phys., 14, 1147-1173, (2013) · Zbl 1373.76217 · doi:10.4208/cicp.190912.080213a
[17] Karniadakis, G.; Beskok, A.; Aluru, N. R., Microflows and Manoflows: Fundamentals and Simulations, (2005), Springer · Zbl 1115.76003
[18] Klinkenberg, L. J.1941The Permeability of Porous Media to Liquids and Gases. American Petroleum Institute, pp. API-41-200.
[19] Lasseux, D.; Valdes Parada, F. J.; Porter, M. L., An improved macroscale model for gas slip flows in porous media, J. Fluid Mech., 805, 118-146, (2016) · doi:10.1017/jfm.2016.562
[20] Loyalka, S. K.; Petrellis, N.; Storvick, T. S., Some numerical results for the BGK model – thermal creep and viscous slip problems with arbitrary accomodation at the surface, Phys. Fluids, 18, 1094-1099, (1975) · Zbl 0315.76037 · doi:10.1063/1.861293
[21] Lunati, I.; Lee, S. H., A dual-tube model for gas dynamics in fractured nanoporous shale formations, J. Fluid Mech., 757, 943-971, (2014) · doi:10.1017/jfm.2014.519
[22] Maxwell, J. C., On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. R. Soc. 1, 170, 231-256, (1879) · JFM 11.0777.01 · doi:10.1098/rstl.1879.0067
[23] Moghaddam, R. N.; Jamiolahmady, M., Slip flow in porous media, Fuel, 173, 298-310, (2016) · doi:10.1016/j.fuel.2016.01.057
[24] Pan, C.; Luo, L. S.; Miller, C. T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35, 898-909, (2006) · Zbl 1177.76323 · doi:10.1016/j.compfluid.2005.03.008
[25] Sharipov, F.; Graur, I. A., Rarefied gas flow through a zigzag channel, Vacuum, 86, 1778-1782, (2012) · doi:10.1016/j.vacuum.2012.02.028
[26] Struchtrup, H., Macroscopic Transport Equations for Rarefied Gas Fows: Approximation Methods in Kinetic Theory, (2005), Springer · Zbl 1119.76002
[27] Struchtrup, H.; Torrihon, M., Regularization of Grad’s 13 moment equations: derivation and linear analysis, Phys. Fluids, 15, 2668-2680, (2003) · Zbl 1186.76504 · doi:10.1063/1.1597472
[28] Taheri, P.; Rana, A. S.; Torrilhon, M.; Struchtrup, H., Macroscopic description of steady and unsteady rarefaction effects in boundary value problems of gas dynamics, Cont. Mech. Theromodyn., 21, 423-443, (2009) · Zbl 1184.76844 · doi:10.1007/s00161-009-0115-3
[29] Takata, S.; Funagane, H., Poiseuille and thermal transpiration flows of a highly rarefied gas: over-concentration in the velocity distribution function, J. Fluid Mech., 669, 242-259, (2011) · Zbl 1225.76258 · doi:10.1017/S0022112010005021
[30] Tang, G. H.; Zhai, G. X.; Tao, W. Q.; Gu, X. J.; Emerson, D. R., Extended thermodynamic approach for non-equilibrium gas flow, Commun. Comput. Phys., 13, 1330-1356, (2013) · Zbl 1373.76301 · doi:10.4208/cicp.301011.180512a
[31] Torrilhon, M., Modeling nonequilibrium gas flow based on moment equations, Annu. Rev. Fluid Mech., 48, 429-458, (2016) · Zbl 1356.76297 · doi:10.1146/annurev-fluid-122414-034259
[32] Wang, Q.; Chen, X.; Jha, A.; Rogers, H., Natural gas from shale formation – the evolution, evidences and challenges of shale gas revolution in United States, Renew. Sust. Energ. Rev., 30, 1-28, (2014) · doi:10.1016/j.rser.2013.08.065
[33] Wu, L.; Reese, J. M.; Zhang, Y. H., Solving the Boltzmann equation by the fast spectral method: application to microflows, J. Fluid Mech., 746, 53-84, (2014) · Zbl 1416.76264 · doi:10.1017/jfm.2014.79
[34] Wu, L.; White, C.; Scanlon, T. J.; Reese, J. M.; Zhang, Y. H., Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys., 250, 27-52, (2013) · Zbl 1349.76790 · doi:10.1016/j.jcp.2013.05.003
[35] Zhu, Y.; Zhong, C.; Xu, K., Implicit unified gas-kinetic scheme for steady state solutions in all flow regimes, J. Comput. Phys., 315, 16-38, (2016) · Zbl 1349.76791 · doi:10.1016/j.jcp.2016.03.038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.