A kind of compact quantum semigroups. (English) Zbl 1267.46079

Summary: We show that the quantum family of all maps from a finite space to a finite-dimensional compact quantum semigroup has a canonical quantum semigroup structure.


46L65 Quantizations, deformations for selfadjoint operator algebras
Full Text: DOI arXiv


[1] S. L. Woronowicz, “Pseudogroups, pseudospaces and Pontryagin duality,” in Proceedings of the International Conference on Mathematical Physics, vol. 116 of Lecture Notes in Physics, pp. 407-412, Lausanne, Switzerland, 1979. · Zbl 0513.46046
[2] P. M. Sołtan, “Quantum families of maps and quantum semigroups on finite quantum spaces,” Journal of Geometry and Physics, vol. 59, no. 3, pp. 354-368, 2009. · Zbl 1160.58007 · doi:10.1016/j.geomphys.2008.11.007
[3] M. M. Sadr, “Quantum functor Mor,” Mathematica Pannonica, vol. 21, no. 1, pp. 77-88, 2010. · Zbl 1240.46079
[4] S. L. Woronowicz, Compact Quantum Groups, Les Houches, Session LXIV, 1995, Quantum Symmetries, Elsevier, 1998. · Zbl 0997.46045
[5] G. J. Murphy and L. Tuset, “Aspects of compact quantum group theory,” Proceedings of the American Mathematical Society, vol. 132, no. 10, pp. 3055-3067, 2004. · Zbl 1052.46060 · doi:10.1090/S0002-9939-04-07400-3
[6] P. M. Sołtan, “Quantum spaces without group structure,” Proceedings of the American Mathematical Society, vol. 138, no. 6, pp. 2079-2086, 2010. · Zbl 1194.46109 · doi:10.1090/S0002-9939-10-10265-2
[7] S. Vaes and A. Van Daele, “Hopf C\ast -algebras,” Proceedings of the London Mathematical Society, vol. 82, no. 2, pp. 337-384, 2001. · Zbl 1028.46100 · doi:10.1112/S002461150101276X
[8] A. Maes and A. Van Daele, “Notes on compact quantum groups,” Nieuw Archief voor Wiskunde, vol. 16, no. 1-2, pp. 73-112, 1998. · Zbl 0962.46054
[9] A. Connes, Noncommutative Geometry, Academic Press, San Diego, Calif, USA, 1994. · Zbl 0840.57013 · doi:10.1016/0040-9383(94)90003-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.