×

The generating set of the differential invariant algebra and Maurer-Cartan equations of a (2+1)-dimensional Burgers equation. (English) Zbl 1280.35128

Summary: The authors construct Maurer-Cartan equation, the generating set of the differential invariant algebra and their syzygies for the symmetry groups of a \((2+1)\)-dimensional Burgers equation, based on the theory of equivariant moving frames of infinite-dimensional Lie pseudo-groups.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Olver P J, Applications of Lie Groups to Differential Equations, Springer-Verlag, Berlin, 1993. · Zbl 0785.58003 · doi:10.1007/978-1-4612-4350-2
[2] Mari-Beffa G, Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces, Proc. Amer. Math. Soc., 2006, 134(3): 779-791. · Zbl 1083.37053 · doi:10.1090/S0002-9939-05-07998-0
[3] McLenaghan R G and Smirnov R G, Hamilton-Jacobi Theory via Cartan Geometry, World Scientific, Singapore, 2009.
[4] Boyko V, Patera J, and Popovych R, Invariants of solvable Lie algebras with triangular nilradicals and diagonal nilindependent elements, Linear Algebra Appl., 2008, 428(4): 834-854. · Zbl 1168.17005 · doi:10.1016/j.laa.2007.08.017
[5] Feng S, Kogan I A, and Krim H, Classification of curves in 2D and 3D via affine integral signatures, Acta. Appl. Math., 2010, 109(3): 903-937. · Zbl 1203.53001 · doi:10.1007/s10440-008-9353-9
[6] Shakiban C and Lloyd P, Signature curves statistics of DNA supercoils, Geometry, Integrability, and Quantization, 2004, 5: 203-210. · Zbl 1054.62138
[7] Fels M and Olver P J, Moving coframes I: A practical algorithm, Acta Appl. Math., 1998, 51(2): 161-213. · Zbl 0937.53012 · doi:10.1023/A:1005878210297
[8] Fels M and Olver P J, Moving coframes II: Regularization and theoretical foundations, Acta Appl. Math., 1999, 55(2): 127-208. · Zbl 0937.53013 · doi:10.1023/A:1006195823000
[9] Kogan I A, Inductive construction of moving frames, Contemp. Math., 2001, 285: 157-170. · Zbl 1006.53011 · doi:10.1090/conm/285/04741
[10] Olver P J, Classical Invariant Theory, London Math. Soc. Student Texts, vol. 44, Cambridge University Press, Cambridge, 1999. · Zbl 0971.13004 · doi:10.1017/CBO9780511623660
[11] Mari-Beffa G and Olver P J, Differential invariants for parametrized projective surfaces, Commun. Anal. Geom., 1999, 7: 807-839. · Zbl 0949.53012
[12] Mansfield E L, Algorithms for symmetric differential systems, Found. Comput. Math., 2001, 1(4): 335-383. · Zbl 0986.35080
[13] Morozov O, Moving coframes and symmetries of differential equations, J. Phys. A: Mathematical and General, 2002, 35(12): 2965-2977. · Zbl 1040.35003 · doi:10.1088/0305-4470/35/12/317
[14] Hubert E and Kogan I A, Smooth and algebraic invariants of a group action: Local and global constructions, Found. Comput. Math., 2007, 7(4): 455-493. · Zbl 1145.53006 · doi:10.1007/s10208-006-0219-0
[15] Boutin M, Numerically invariant signature curves, Int. J. Computer Vision, 2000, 40(3): 235-248. · Zbl 1012.68707 · doi:10.1023/A:1008139427340
[16] Calabi E, Olver P J, Shakiban C, Tannenbaum A, and Haker S, Differential and numerically invariant signature curves applied to object recognition, Int. J. Computer Vision, 1998, 26(2): 107-135. · doi:10.1023/A:1007992709392
[17] Olver P J and Pohjanpelto J, Maurer-Cartan forms and the structure of Lie pseudo-groups, Selecta Math., 2005, 11(1): 99-126. · Zbl 1091.58014 · doi:10.1007/s00029-005-0008-7
[18] Olver P J and Pohjanpelto J, Moving frames for Lie pseudo-groups, Canadian J. Math., 2008, 60: 1336-1386. · Zbl 1160.53006 · doi:10.4153/CJM-2008-057-0
[19] Cheh J, Olver P J, and Pohjanpelto J, Maurer-Cartan equations for Lie symmetry pseudo-groups of differential equations, J. Math. Phys., 2005, 46(2): 023504. · Zbl 1076.37054 · doi:10.1063/1.1836015
[20] Cheh J, Olver P J, and Pohjanpelto J, Algorithms for differential invariants of symmetry groups of differential equations, Found. Comput. Math., 2008, 8(4): 501-532. · Zbl 1183.58016 · doi:10.1007/s10208-005-0206-x
[21] Morozov O I, Structure of symmetry groups via Cartan’s method: Survey of four approaches, SIGMA: Symmetry Integrability Geom. Methods Appl., 2005, 1: 006. · Zbl 1092.58017
[22] Francis V and Olver P J, Application of Moving Frames to Lie Pseudo-Groups, University of Minnesota, 2009.
[23] Olver P J, Lectures on moving frames, London Math. Soc. Lecture Note Series, 2011, 381: 207-246. · Zbl 1235.53016
[24] Bartucetucetli M and Pantano P, Two-dimensional Burgers equation, Nuovo Cimento, 1983, 37(12): 433-438.
[25] Webb G M and Zank G P, Painleve analysis of the two dimensional Burgers equation, J. Phys. A: Mathematical and General, 1990, 23(23): 5465-5477. · Zbl 0719.35090 · doi:10.1088/0305-4470/23/23/020
[26] Du X Y, New exact solutions for (2+1)-dimensional Burgers equation, Journal of Southwest China Normal University (Natural Science), 2006, 31(4): 29-31.
[27] Zhou Z M, Tan X Y, and Zhang J, Lie point symmetry, similarity reduction, and exact solutions of (2+1)-dimensional generalized Burgers equation, Pure and Applied Mathematics, 2011, 27(1): 138-142. · Zbl 1240.35507
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.