×

Single-fluid model of a mixture for laminar flows of highly concentrated suspensions. (English. Russian original) Zbl 1395.76103

Fluid Dyn. 53, No. 2, 255-269 (2018); translation from Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza 2018, No. 2, 84-98 (2018).
Summary: A model of laminar flow of a highly concentrated suspension is proposed. The model includes the equation of motion for the mixture as a whole and the transport equation for the particle concentration, taking into account a phase slip velocity. The suspension is treated as a Newtonian fluid with an effective viscosity depending on the local particle concentration. The pressure of the solid phase induced by particle-particle interactions and the hydrodynamic drag force with account of the hindering effect are described using empirical formulas. The partial-slip boundary condition for the mixture velocity on the wall models the formation of a slip layer near the wall. The model is validated against experimental data for rotational Couette flow, a plane-channel flow with neutrally buoyant particles, and a fully developed flow with heavy particles in a horizontal pipe. Based on the comparison with the experimental data, it is shown that the model predicts well the dependence of the pressure difference on the mixture velocity and satisfactorily describes the dependence of the delivered particle concentration on the flow velocity.

MSC:

76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Matas, J. P.; Morris, J. F.; Guazzelli, E., Lateral forces on a sphere, Oil and Gas Science and Technology -Rev. IFP, 59, 59-70, (2004) · Zbl 1171.76348 · doi:10.2516/ogst:2004006
[2] Saffman, P. G., The lift on a small sphere in a slow shear flow, J.^Fluid Mech., 22, 385-400, (1965) · Zbl 0218.76043 · doi:10.1017/S0022112065000824
[3] Saffman, P. G., Corrigendum to “the lift on a small sphere in a slow shear flow, J. Fluid Mech., 31, 624-624, (1968) · doi:10.1017/S0022112068999990
[4] Morris, J. F., A^review of microstructure in concentrated suspensions and its applications for rheology and bulk flow, Rheol. Acta, 48, 909-923, (2009) · doi:10.1007/s00397-009-0352-1
[5] Leighton, D.; Acrivos, A., The shear-induced migration of particles in concentrated suspensions, J.^FluidMech., 181, 415-439, (1987) · doi:10.1017/S0022112087002155
[6] Lyon, M. K.; Leal, L. G., An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems, J. FluidMech., 363, 25-56, (1998) · Zbl 0967.76512 · doi:10.1017/S0022112098008817
[7] Altobelli, S. A.; Givler, R. C.; Fukushima, E., Velocity and concentration measurements of suspensions by nuclearmagnetic resonance imaging, J. Rheology, 35, 721-734, (1991) · doi:10.1122/1.550156
[8] Butler, J. E.; Majors, P. D.; Bonnecaze, R. T., Observations of shear-induced particle migration for oscillatory flow of a suspension within a tube, Phys. Fluids, 11, 2865-2877, (1999) · Zbl 1149.76331 · doi:10.1063/1.870145
[9] Phillips, R. J.; Armstrong, R. C.; Brown, R. A.; Graham, A. L.; Abbott, J. R., A^constitutive model for concentrated suspensions that accounts for shear-induced particle migration, Phys. Fluids A., 4, 30-40, (1992) · Zbl 0742.76009 · doi:10.1063/1.858498
[10] Naraigh, L. O.; Barros, R., Particle-laden viscous channel flows: model regulation and parameter study, European J. Mechanics B/Fluids, 59, 90-98, (2016) · Zbl 1408.76536 · doi:10.1016/j.euromechflu.2016.05.005
[11] Nott, P.R.; Brady, J. F., Pressure-driven flow of suspensions: simulations and theory, J. Fluid Mech., 275, 157-199, (1994) · Zbl 0925.76835 · doi:10.1017/S0022112094002326
[12] Morris, J. F.; Boulay, F., Curvilinear flows of non-colloidal suspensions: the role of normal stresses, J. Rheology, 43, 1213-1237, (1999) · doi:10.1122/1.551021
[13] Miller, R. M.; Singh, J. P.; Morris, J. F., Suspension flow modeling for general geometries, Chemical Engineering Science, 64, 4597-4610, (2009) · Zbl 1074.76061 · doi:10.1016/j.ces.2009.04.033
[14] Manninen, M.; Taivassalo, V.; Kallio, S., On the mixture model for multiphase flow, (1996)
[15] Zaichik, L. I.; Drobyshevsky, N. I.; Filippov, A. S.; Mukin, R. V.; Strizhov, V. F., Adiffusion-inertiamodel for predicting dispersion and deposition of low-inertia particles in turbulent flows, Int. J. Heat Mass Transfer, 53, 154-162, (2010) · Zbl 1329.76145 · doi:10.1016/j.ijheatmasstransfer.2009.09.044
[16] Boronin, S. A.; Osiptsov, A. A., Two-continua model of suspension flow in a hydraulic fracture, Doklady Physics, 55, 199-202, (2010) · doi:10.1134/S1028335810040117
[17] Lun, C. K. K.; Savage, S. B.; Jeffrey, D. J.; Chepurniy, N., Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field, J. FluidMech., 140, 223-256, (1984) · Zbl 0553.73098 · doi:10.1017/S0022112084000586
[18] Kaushal, D. R.; Thinglas, T.; Tomita, Y.; Kuchii, Sh.; Tsukamoto, H., “CFD modeling for pipeline flow of fine particles at high concentration, Int. J. Multiphase Flow, 43, 85-100, (2012) · doi:10.1016/j.ijmultiphaseflow.2012.03.005
[19] Ekambara, K.; Sanders, R. S.; Nandakumar, K.; Masliyah, J.H., Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX, Ind. Eng. Chem. Res., 48, 8159-8171, (2009) · doi:10.1021/ie801505z
[20] Norman, J. T.; Nayak, H. V.; Bonnecaze, R. T., Migration of buoyant particles in low-Reynolds-number pressure-driven flows, J. FluidMech., 523, 1-35, (2005) · Zbl 1060.76512 · doi:10.1017/S0022112004000886
[21] R. I. Nigmatulin, Dynamics of Multiphase Media, Vols. 1-2 (Hemisphere, New York, 1989).
[22] Jackson, R., Locally averaged equations of motion for a mixture of identical particles and a Newtonian fluid, Chem. Eng. Sci., 52, 2457-2469, (1997) · doi:10.1016/S0009-2509(97)00065-1
[23] P. R. Nott, E. Guazzelli, and O. Pouliquen, “The Suspension Balance Model Revisited,” Phys. Fluids 23, 043304.1-043304.13 (2011).
[24] R. Jackson, The Dynamics of Fluidized Particles (Cambridge Univ. Press, Cambridge, 2000). · Zbl 0956.76004
[25] Auton, T. R.; Hunt, J. C. R.; Prud’homme, M., The force exerted on a body in inviscid unsteady non-uniform rotational flow, J. Fluid Mech., 197, 241-257, (1988) · Zbl 0661.76114 · doi:10.1017/S0022112088003246
[26] Maxey, M. R.; Riley, J. J., Equation of motion for a small rigid sphere in a non-uniform flow, Phys. Fluids, 26, 883-889, (1983) · Zbl 0538.76031 · doi:10.1063/1.864230
[27] Richardson, J. F.; Zaki, W. N., Sedimentation and fluidization. part I, Trans. Instit. Chemical Engineers, 32, 35-53, (1954)
[28] Cheng, N. S.; Law, A. W. K., Exponential formula for computing effective viscosity, Powder Technol., 129, 156-160, (2003) · doi:10.1016/S0032-5910(02)00274-7
[29] Shojaei, A.; Arefinia, R., Analysis of the sedimentation process in reactive polymeric suspensions, Chemical Engineering Science, 61, 7565-7578, (2006) · doi:10.1016/j.ces.2006.08.050
[30] Miller, R. M.; Morris, J. F., Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions, J. Non-Newtonian Fluid Mech., 135, 149-165, (2006) · Zbl 1195.76406 · doi:10.1016/j.jnnfm.2005.11.009
[31] Clausen, J. R., Using the suspension balance model in a finite-element flow solver, Computers and Fluids, 87, 67-78, (2013) · Zbl 1290.76153 · doi:10.1016/j.compfluid.2012.12.004
[32] Boyer, F.; Pouliquen, O.; Guazzelli, E., Dense suspensions in rotating-rod flows: normal stresses and particle migration, J. FluidMech., 686, 5-25, (2011) · Zbl 1241.76008 · doi:10.1017/jfm.2011.272
[33] Dbouk, T.; Lobry, L.; Lemaire, E., Normal stresses in concentrated non-Brownian suspensions, J. FluidMech., 715, 239-272, (2013) · Zbl 1284.76378 · doi:10.1017/jfm.2012.516
[34] Krieger, I.M., Rheology of monodisperse lattice, Adv. Colloid Interface Sci., 3, 111-136, (1972) · doi:10.1016/0001-8686(72)80001-0
[35] Fang, Z.; Mammoli, A. A.; Brady, J. F.; Ingber, M. S.; Mondy, L. A.; Graham, A. L., Flow-aligned tensor models for suspension flows, Int. J. Multiphase Flow, 28, 137-166, (2002) · Zbl 1136.76500 · doi:10.1016/S0301-9322(01)00055-6
[36] A. Ramachandran and D. T. Leighton Jr., “Visible Consequence in a Tube: the Impact of Secondary Flows Resulting from Second Normal Stress Differences,” Phys. Fluids 19, 053301.1-053301.15 (2007). · Zbl 1146.76510
[37] Gillies, R. G.; Hill, K. B.; McKibben, M. J.; Shook, C. A., Solids transport by laminar Newtonian flows, Powder Technology, 104, 269-277, (1999) · doi:10.1016/S0032-5910(99)00104-7
[38] Tetlow, N.; Graham, A. L.; Ingber, M. S.; Subia, S. R.; Mondy, L. A.; Altobelli, S.A., Particle migration in a Couette apparatus: experiment and modeling, J. Rheology, 42, 307-327, (1998) · doi:10.1122/1.550954
[39] Kalyon, D., Apparent slip and viscoplasticity of concentrated suspensions, J. Rheology, 49, 621-640, (2005) · doi:10.1122/1.1879043
[40] Ingber, M. S.; Graham, A. L.; Mondy, L. A.; Fang, Z., An improved constitutive model for concentrated suspensions accounting for shear-induced particlemigration rate dependence on particle radius, Int. J. Multiphase Flow, 35, 270-276, (2009) · doi:10.1016/j.ijmultiphaseflow.2008.11.003
[41] Gavrilov, A. A.; Minakov, A. V.; Dekterev, A. A.; Rudyak, V. Y., A^numerical algorithm for modeling laminar flows in an annular channel with eccentricity, Siberian J. Industrial Mathematics, 13, 3-14, (2010) · Zbl 1228.76094
[42] Gavrilov, A. A.; Minakov, A. V.; Dekterev, A. A.; Rudyak, V. Y., A^numerical algorithm for modeling steady laminar flows of non-Newtonian fluid in annulus with eccentricity, Computational Technologies, 17, 44-56, (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.