×

Ambrosetti-Prodi type result to a Neumann problem via a topological approach. (English) Zbl 1392.34017

The author studies the Neumann problem \[ \begin{aligned} u''+a(x)g(u) &=\mu+p(x), \\ u'(0)\;\;=\;\;u'(T)&=0, \end{aligned} \] where \(p\) is a bounded, measurable real function, \(g\) is \(C^1\) in \(\mathbb R\) with \(-\infty<g'(-\infty)<0<g'(+\infty)<+\infty\), and \(a\in L^\infty(0,T)\) is a non-negative function with \(\int_0^Ta(x)\,dx>0\). The main result says that if the number \(\mu\) is sufficiently large, the problem has at least two solutions.
One of the solutions, say \(\tilde u\), is obtained by truncation and shooting and by construction it is negative (assuming, without loss of generality, that \(g(0)=0\) and \(g'(s)<0\) if \(s<0\)). A second solution is also obtained by shooting between the initial conditions of \(\tilde u+\varepsilon\), with \(\varepsilon>0\) small, and initial conditions \((u(0),0)\) with \(u(0)\) positive and large.
The article contains a history of this kind of problems and stresses that a significant feature is the fact that the result holds with weight functions \(a\) that may vanish in a set of positive measure.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Amann, A multiplicity result for a class of elliptic boundary value problems,, Proc. Roy. Soc. Edinburgh Sect. A, 84, 145 (1979) · Zbl 0416.35029 · doi:10.1017/S0308210500017017
[2] A. Ambrosetti, Observations on global inversion theorems,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 22, 3 (2011) · Zbl 1217.47106 · doi:10.4171/RLM/584
[3] A. Ambrosetti, On the inversion of some differentiable mappings with singularities between Banach spaces,, Ann. Mat. Pura Appl. (4), 93, 231 (1972) · Zbl 0288.35020 · doi:10.1007/BF02412022
[4] A. Ambrosetti, <em>A Primer of Nonlinear Analysis</em>, vol. 34 of Cambridge Studies in Advanced Mathematics,, Cambridge University Press (1993) · Zbl 0781.47046
[5] H. Berestycki, Sharp existence results for a class of semilinear elliptic problems,, Bol. Soc. Brasil. Mat., 12, 9 (1981) · Zbl 0571.35038 · doi:10.1007/BF02588317
[6] M. S. Berger, On the solutions of a nonlinear Dirichlet problem,, Indiana Univ. Math. J., 24, 837 · Zbl 0329.35026 · doi:10.1512/iumj.1975.24.24066
[7] E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations,, J. Math. Pures Appl. (9), 57, 351 (1978) · Zbl 0394.35040
[8] C. De Coster, <em>Two-point Boundary Value Problems: Lower and Upper Solutions</em>, vol. 205 of Mathematics in Science and Engineering,, Elsevier B. V. (2006) · Zbl 1330.34009
[9] D. G. de Figueiredo, <em>Lectures on Boundary Value Problems of Ambrosetti-Prodi Type</em>,, Atas do 12° Seminario Brasileiro de Análise (1980)
[10] C. Fabry, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations,, Bull. London Math. Soc., 18, 173 (1986) · Zbl 0586.34038 · doi:10.1112/blms/18.2.173
[11] A. Fonda, On a singular periodic Ambrosetti-Prodi problem,, Nonlinear Anal., 149, 146 (2017) · Zbl 1385.34030 · doi:10.1016/j.na.2016.10.018
[12] S. Fučík, Boundary value problems with jumping nonlinearities,, Časopis Pěst. Mat., 101, 69 (1976) · Zbl 0332.34016
[13] J. L. Kazdan, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28, 567 (1975) · Zbl 0325.35038 · doi:10.1002/cpa.3160280502
[14] A. Manes, Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine,, Boll. Un. Mat. Ital. (4), 7, 285 (1973) · Zbl 0275.49042
[15] J. Mawhin, Ambrosetti-Prodi type results in nonlinear boundary value problems,, in Differential equations and mathematical physics (Birmingham, 290 (1986) · Zbl 0651.34014 · doi:10.1007/BFb0080609
[16] J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the \(p\)-Laplacian,, J. Eur. Math. Soc. (JEMS), 8, 375 (2006) · Zbl 1109.34033 · doi:10.4171/JEMS/58
[17] R. Ortega, Stability and index of periodic solutions of an equation of Duffing type,, Boll. Un. Mat. Ital. B (7), 3, 533 (1989) · Zbl 0686.34052
[18] R. Ortega, Stability of a periodic problem of Ambrosetti-Prodi type,, Differential Integral Equations, 3, 275 (1990) · Zbl 0724.34059
[19] A. E. Presoto, A Neumann problem of Ambrosetti-Prodi type,, J. Fixed Point Theory Appl., 18, 189 (2016) · Zbl 1337.35044 · doi:10.1007/s11784-015-0277-5
[20] I. Rachůnková, On the number of solutions of the Neumann problem for the ordinary second order differential equation,, Ann. Math. Sil., 7, 79 (1993) · Zbl 0804.34018
[21] E. Sovrano, The Ambrosetti-Prodi periodic problem: Different routes to complex dynamics,, Dynam. Systems Appl. · Zbl 1390.34116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.