×

zbMATH — the first resource for mathematics

Who invented the delta method, really? (English) Zbl 07335826
From the text: In statistics, the delta method is a procedure for finding the means and variances of functions of random variables. In spite of the usefulness of the delta method,its history does not seem to have been properly documented.
MSC:
60-03 History of probability theory
62-03 History of statistics
01A50 History of mathematics in the 18th century
01A55 History of mathematics in the 19th century
01A60 History of mathematics in the 20th century
Keywords:
delta method
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cotes, R. (1714). Logometria. Philosophical Transactions of the Royal Society of London, 29(338), 5-45.
[2] Cotes, R. (1722). Harmonia mensurarum: Cambridge (ed. by Robert Smith).
[3] Cramér, H., Mathematical Methods of Statistics (1946), Princeton: Princeton University Press, Princeton · Zbl 0063.01014
[4] Doob, JL, The limiting distributions of certain statistics, Annals of Mathematical Statistics, 6, 3, 160-169 (1935) · JFM 61.1296.01
[5] Dorfman, R., A note on the delta-method for finding variance formulae, The Biometric Bulletin, 1, 129-137, 92 (1938)
[6] Fisher, RA, Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population, Biometrika, 10, 507-521 (1915)
[7] Gauss, C. F. (1809). Theoria Motus Corporum Coelestium. Hamburg: Perthes et Besser (English Translation by C.H. Davis as Theory of Motion of the Heavenly Bodies Moving About the Sun in Conic Sections, Little, Brown, Boston. 1857. Reprinted in 1963, Dover, New York).
[8] Gauss, C. F. (1823). Theoria Combinationis Observationum Erroribus Minimis Obnoxia. Göttingen: Dieterich (English translation by G. W. Stewart published as Theory of the Combination of Observations Least Subject to Errors, 1995, SIAM, Philadelphia).
[9] Gorroochurn, P., Classic Topics on the History of Modern Mathematical Statistics: From Laplace to Modern Recent Times (2016), Hoboken, NJ: Wiley, Hoboken, NJ · Zbl 1373.62007
[10] Kelley, TL, Crossroads in the Mind of Man: A Study of Differentiable Mental Abilities (1928), Stanford, CA: Stanford University Press, Stanford, CA
[11] La Caille, N.-L. (1741 [1744]). Calcul des différences dans la Trigonométrie sphérique. Mém. Acad. Roy. des Sci., 238-260.
[12] Lambert, J. H. (1760). Photometria sive de Mensura et Gradibus Luminis, Colorum et Umbrae. Augsburg: Detleffsen.
[13] Lambert, J. H. (1765-1772). Beyträge zum Gebrauche der Mathematik und deren Anwendung (Vol. 2). Berlin: (Vol. 1, 1765, Vol. 2, 1770, Vol. 3, 1772). Verlag des Buchladens der Realschule.
[14] Marinoni, G. J. d. (1751). De re ichnographica: cujus hodierna praxis exponitur, et propriis exemplis pluribus illustratur, inque varias, quae contingere possunt, ejusdem aberrationes, posito quoque calculo, inquiritur. Viennae, Austriae: Prostat apud Leopoldum Kaliwoda.
[15] Parratt, LG, Probability and Experimental Errors in Science: An Elementary Survey (1961), New York: Wiley, New York · Zbl 0101.10804
[16] Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical Transactions of the Royal Society of London, 185(Ser. A), 71-110. · JFM 25.0347.02
[17] Pearson, K.; Filon, LNG, Mathematical contributions to the theory of evolution. IV. On the probable errors of frequency constants and on the influence of random selection on variation and correlation. Phil. Trans.R Soc, Lond. A, 191, 229-311 (1898) · JFM 29.0192.01
[18] Portnoy, S. (2013). Ver Hoef, J. M. (2012), “Who Invented the Delta Method?” The American Statistician, 66, 124-127: Comment by S. Portnoy and Reply. The American Statistician, 67(3), 190-190.
[19] Schreiber, P.; Grattan-Guinness, I., General Numerical Mathematics, Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences (1994), London: Routledge, London
[20] Ver Hoef, JM, Who invented the delta method?, The American Statistician, 66, 2, 124-127 (2012)
[21] Wright, S., The method of path coefficients, Annals of Mathematical Statistics, 5, 3, 161-215 (1934) · JFM 60.1177.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.